A Nonlinear Inequality and Evolution Problems
نویسنده
چکیده
Assume that g(t) ≥ 0, and ġ(t) ≤ −γ(t)g(t) + α(t, g(t)) + β(t), t ≥ 0; g(0) = g0; ġ := dg dt , on any interval [0, T ) on which g exists and has bounded derivative from the right, ġ(t) := lims→+0 g(t+s)−g(t) s . It is assumed that γ(t), and β(t) are nonnegative continuous functions of t defined on R+ := [0,∞), the function α(t, g) is defined for all t ∈ R+, locally Lipschitz with respect to g uniformly with respect to t on any compact subsets [0, T ], T < ∞, and non-decreasing with respect to g, α(t, g1) ≥ α(t, g2) if g1 ≥ g2. If there exists a function μ(t) > 0, μ(t) ∈ C(R+), such that α t, 1 μ(t) + β(t) ≤ 1 μ(t) γ(t) − μ̇(t) μ(t) , ∀t ≥ 0; μ(0)g(0) ≤ 1, then g(t) exists on all of R+, that is T = ∞, and the following estimate holds: 0 ≤ g(t) ≤ 1 μ(t) , ∀t ≥ 0. If μ(0)g(0) < 1, then 0 ≤ g(t) < 1 μ(t) , ∀t ≥ 0. A discrete version of this result is obtained. The nonlinear inequality, obtained in this paper, is used in a study of the Lyapunov stability and asymptotic stability of solutions to differential equations in finite and infinite-dimensional spaces.
منابع مشابه
Periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces
This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive evolution equations. By using the theory of semigroup and fixed point methods, some conditions ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the effectiveness of the proposed results.
متن کاملStrong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces
In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.
متن کاملMultiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملSequential Optimality Conditions and Variational Inequalities
In recent years, sequential optimality conditions are frequently used for convergence of iterative methods to solve nonlinear constrained optimization problems. The sequential optimality conditions do not require any of the constraint qualications. In this paper, We present the necessary sequential complementary approximate Karush Kuhn Tucker (CAKKT) condition for a point to be a solution of a ...
متن کاملNonconvex Evolution Inclusions Generated by Time - Dependent Subdifferential Operators
We consider nonlinear nonconvex evolution inclusions driven by time-varying subdifferentials 0(t,x) without assuming that (t,.) is of compact type. We show the existence of extremal solutions and then we prove a strong relaxation theorem. Moreover,r we show that under a Lipschitz condition on the orientor field, the solution set of the nonconvex problem is path-connected in C(T,H). These result...
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کامل