Mapping of Urban Surface Water Bodies from Sentinel-2 MSI Imagery at 10 m Resolution via NDWI-Based Image Sharpening
نویسندگان
چکیده
This study conducts an exploratory evaluation of the performance of the newly available Sentinel-2A Multispectral Instrument (MSI) imagery for mapping water bodies using the image sharpening approach. Sentinel-2 MSI provides spectral bands with different resolutions, including RGB and Near-Infra-Red (NIR) bands in 10 m and Short-Wavelength InfraRed (SWIR) bands in 20 m, which are closely related to surface water information. It is necessary to define a pan-like band for the Sentinel-2 image sharpening process because of the replacement of the panchromatic band by four high-resolution multi-spectral bands (10 m). This study, which aimed at urban surface water extraction, utilised the Normalised Difference Water Index (NDWI) at 10 m resolution as a high-resolution image to sharpen the 20 m SWIR bands. Then, object-level Modified NDWI (MNDWI) mapping and minimum valley bottom adjustment threshold were applied to extract water maps. The proposed method was compared with the conventional most related band(between the visible spectrum/NIR and SWIR bands) based and principal component analysis first component-based sharpening. Results show that the proposed NDWI-based MNDWI image exhibits higher separability and is more effective for both classification-level and boundary-level final water maps than traditional approaches.
منابع مشابه
Water Bodies' Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band
Monitoring open water bodies accurately is an important and basic application in remote sensing. Various water body mapping approaches have been developed to extract water bodies from multispectral images. The method based on the spectral water index, especially the Modified Normalized Difference Water Index (MDNWI) calculated from the green and Shortwave-Infrared (SWIR) bands, is one of the mo...
متن کاملOpen Surface Water Mapping Algorithms: A Comparison of Water-Related Spectral Indices and Sensors
Open surface water bodies play an important role in agricultural and industrial production, and are susceptible to climate change and human activities. Remote sensing data has been increasingly used to map open surface water bodies at local, regional, and global scales. In addition to image statistics-based supervised and unsupervised classifiers, spectral indexand threshold-based approaches ha...
متن کاملHigh-Resolution Mapping of Urban Surface Water Using ZY-3 Multi-Spectral Imagery
Accurate information of urban surface water is important for assessing the role it plays in urban ecosystem services under the content of urbanization and climate change. However, high-resolution monitoring of urban water bodies using remote sensing remains a challenge because of the limitation of previous water indices and the dark building shadow effect. To address this problem, we proposed a...
متن کاملAn Automated Approach for Sub-Pixel Registration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) Imagery
Moderate spatial resolution satellite data from the Landsat-8 OLI and Sentinel-2A MSI sensors together offer 10 m to 30 m multi-spectral reflective wavelength global coverage, providing the opportunity for improved combined sensor mapping and monitoring of the Earth’s surface. However, the standard geolocated Landsat-8 OLI L1T and Sentinel-2A MSI L1C data products are currently found to be misa...
متن کاملEvaluation of the DisTrad thermal sharpening methodology for urban areas
The goal of this paper is to evaluate the DisTrad sharpening technique for deriving land surface temperatures over urban areas. While the original DisTrad technique is based on the correlation between land surface temperature and NDVI, this study evaluates the performance of DisTrad over different land covers by analysing the correlation between land surface temperature and 15 different indices...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017