Forward genetic analysis reveals multiple gating mechanisms of TRPV4.

نویسندگان

  • Stephen Loukin
  • Zhenwei Su
  • Xinliang Zhou
  • Ching Kung
چکیده

TRPV4 is a polymodal cation channel gain-of-function (GOF) allele which causes skeletal dysplasia in humans. To better understand its gating, we screened for additional GOF alleles based on their ability to block yeast proliferation. Repeatedly, only a limited number of such growth-blocking mutations were isolated. Expressed in oocytes, wild-type channels can be strongly activated by either hypotonicity or exposure to the potent agonist 4alphaPDD, although the GOF channels behaved as if they were fully prestimulated as well as lacking a previously uncharacterized voltage-dependent inactivation. Five of six mutations occurred at or near the inner ends of the predicted core helices, giving further direct evidence that this region indeed forms the main intracellular gate in TRP channels. Surprisingly, both wild-type channels as well as these GOF channels maintain strong steady-state outward rectification that is not due to a Ca(2+) block, as has been proposed elsewhere. We conclude that TRPV4 contains an additional voltage-dependent gating mechanism in series with the main intracellular gate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Characterization of the Mammalian TRPV4 Channel: Yeast Screen Reveals Gain-of-Function Mutations

Functional Characterization of the Mammalian TRPV4 Channel: Yeast Screen Reveals Gain-of-Function Mutations Christina A. Doyle Transient receptor potential (TRP) channels are a class of six-transmembrane (6-TM) cation-permeable channels that mediate flux of calcium and sodium into cells, leading to depolarization as well as activation of calcium-mediated second-messenger signaling pathways. The...

متن کامل

Domestication of Persian Shallot (Allium hirtifolium) as Cultivated Crop

Due to highly consumption of extensive wild germplasm of Allium hirtifolium Boiss (Mooseer) in food and medicinal industry, exploration and domestication process have been done in Golestan province (Gorgan). Economic productions of domesticated Persian Shallot plants need to be improved through breeding process. The successes of domesticated accessions improvement program depend on the availabl...

متن کامل

Improved resolution of single channel dwell times reveals mechanisms of binding, priming, and gating in muscle AChR

The acetylcholine receptor (AChR) from vertebrate skeletal muscle initiates voluntary movement, and its kinetics of activation are crucial for maintaining the safety margin for neuromuscular transmission. Furthermore, the kinetic mechanism of the muscle AChR serves as an archetype for understanding activation mechanisms of related receptors from the Cys-loop superfamily. Here we record currents...

متن کامل

Developing Persian version of Sensory Gating Inventory ‎‎(SGI): Validity and Reliability‎

Introduction: Sensory Gating Inventory (SGI) measures behavioral aspects of Sensory Gating (SG). It is a filtering mechanism of brain that prevents irrelevant sensory inputs from entering into higher cortex information processing. It modifies sensitivity to sensory stimuli. Abnormal SG leads to overloading of information into cortex and brain dysfunction. Electrophysiological techniques cannot ...

متن کامل

EDHF redux: EETs, TRPV4, and Ca2+ sparks.

Over the past two decades the complexity of the molecular processes underlying endothelialdependent vascular relaxation has gradually become apparent. After the ground breaking discovery of the role of NO as a major endothelium-derived relaxant factor (EDRF), evidence emerged indicating the existence of a hyperpolarizing factor (endothelium-derived hyperpolarizing factor [EDHF]) with actions di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 26  شماره 

صفحات  -

تاریخ انتشار 2010