Finesse of transparent tissue cutting by ultrafast lasers at various wavelengths.
نویسندگان
چکیده
Transparent ocular tissues, such as the cornea and crystalline lens, can be ablated or dissected using short-pulse lasers. In refractive and cataract surgeries, the cornea, lens, and lens capsule can be cut by producing dielectric breakdown in the focus of a near-infrared (IR) femtosecond laser, which results in explosive vaporization of the interstitial water, causing mechanical rupture of the surrounding tissue. Here, we compare the texture of edges of lens capsule cut by femtosecond lasers with IR and ultraviolet (UV) wavelengths and explore differences in interactions of these lasers with biological molecules. Scanning electron microscopy indicates that a 400-nm laser is capable of producing very smooth cut edges compared to 800 or 1030 nm at a similar focusing angle. Using gel electrophoresis and liquid chromatography/mass spectrometry, we observe laser-induced nonlinear breakdown of proteins and polypeptides by 400-nm femtosecond pulses above and below the dielectric breakdown threshold. On the other hand, 800-nm femtosecond lasers do not produce significant dissociation even above the threshold of dielectric breakdown. However, despite this additional interaction of UV femtosecond laser with proteins, we determine that efficient cutting requires plasma-mediated bubble formation and that remarkably smooth edges are the result of reduced thresholds and smaller focal volume.
منابع مشابه
Comparison of Soft Tissue Thermal Changes Induced by Three Types of Diode Lasers at 810, 940, and 980nm Wavelengths
Background and Aim: Diode laser is a great choice for soft tissue surgery. The diode laser is partially absorbed by hard dental tissues, making it safe for soft tissue surgery. This study aimed to compare the tissue thermal changes induced by three types of diode lasers at 810, 940, and 980nm wavelengths. Materials and Methods: In this in-vitro experimental study, using a diode laser device (c...
متن کاملA medium-finesse optical cavity for the stabilization of Rydberg lasers
We describe the design, construction, and characterization of a medium-finesse Fabry–Pérot cavity for simultaneous frequency stabilization of two lasers operating at 960 and 780 nm wavelengths, respectively. The lasers are applied in experiments with ultracold rubidium Rydberg atoms, for which a combined laser linewidth similar to the natural Rydberg linewidth (≈ 10 kHz) is desired. The cavity,...
متن کاملMedium-finesse optical cavity for the stabilization of Rydberg lasers.
We describe the design, construction, and characterization of a medium-finesse Fabry-Perot cavity for simultaneous frequency stabilization of two lasers operating at 960 and 780 nm wavelengths, respectively. The lasers are applied in experiments with ultracold rubidium Rydberg atoms, for which a combined laser linewidth similar to the natural Rydberg linewidth (≈10 kHz) is desired. The cavity,...
متن کاملSoft tissue 10,600 nm CO2 laser orthodontic procedures
Introduction Soft tissue surgical lasers have many advantages over traditional scalpel surgery, cryosurgery, and electrosurgery. However, not all lasers are equally efficient at both cutting the soft tissue, coagulating, and hemostasis because light absorption in the soft tissue varies with wavelength.1-3 As illustrated in Figure 1, some dental laser wavelengths (around 1,000 nm, such as diodes...
متن کاملEnhanced hemostasis and improved healing in CO2 laser-assisted soft tissue oral surgeries
The key to successful applications of soft tissue lasers and their advantages over other surgical tools is their ability to accurately cut and efficiently coagulate the soft tissue at the same time. However, not all lasers are efficient at both cutting and coagulating. Some laser wavelengths (such as those of Erbium lasers) are great at cutting but are not as efficient at coagulating.1 Other wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical optics
دوره 20 12 شماره
صفحات -
تاریخ انتشار 2015