A quantitative investigation of linker histone interactions with nucleosomes and chromatin

نویسندگان

  • Alison E. White
  • Aaron R. Hieb
  • Karolin Luger
چکیده

Linker histones such as H1 are abundant basic proteins that bind tightly to nucleosomes, thereby acting as key organizers of chromatin structure. The molecular details of linker histone interactions with the nucleosome, and in particular the contributions of linker DNA and of the basic C-terminal tail of H1, are controversial. Here we combine rigorous solution-state binding assays with native gel electrophoresis and Atomic Force Microscopy, to quantify the interaction of H1 with chromatin. We find that H1 binds nucleosomes and nucleosomal arrays with very tight affinity by recognizing a specific DNA geometry minimally consisting of a solitary nucleosome with a single ~18 base pair DNA linker arm. The association of H1 alters the conformation of trinucleosomes so that only one H1 can bind to the two available linker DNA regions. Neither incorporation of the histone variant H2A.Z, nor the presence of neighboring nucleosomes affects H1 affinity. Our data provide a comprehensive thermodynamic framework for this ubiquitous chromatin architectural protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulations of DNA Contacts by Linker Histones and Post-translational Modifications Determine the Mobility and Modifiability of Nucleosomal H3 Tails.

Post-translational histone modifications and linker histone incorporation regulate chromatin structure and genome activity. How these systems interface on a molecular level is unclear. Using biochemistry and NMR spectroscopy, we deduced mechanistic insights into the modification behavior of N-terminal histone H3 tails in different nucleosomal contexts. We find that linker histones generally inh...

متن کامل

Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model.

The role of each histone tail in regulating chromatin structure is elucidated by using a coarse-grained model of an oligonucleosome incorporating flexible histone tails that reproduces the conformational and dynamical properties of chromatin. Specifically, a tailored configurational-bias Monte Carlo method that efficiently samples the possible conformational states of oligonucleosomes yields po...

متن کامل

HMGN1 and 2 remodel core and linker histone tail domains within chromatin

The structure of the nucleosome, the basic building block of the chromatin fiber, plays a key role in epigenetic regulatory processes that affect DNA-dependent processes in the context of chromatin. Members of the HMGN family of proteins bind specifically to nucleosomes and affect chromatin structure and function, including transcription and DNA repair. To better understand the mechanisms by wh...

متن کامل

Nucleosome–nucleosome interactions via histone tails and linker DNA regulate nuclear rigidity

Cells, as well as the nuclei inside them, experience significant mechanical stress in diverse biological processes, including contraction, migration, and adhesion. The structural stability of nuclei must therefore be maintained in order to protect genome integrity. Despite extensive knowledge on nuclear architecture and components, however, the underlying physical and molecular mechanisms remai...

متن کامل

Specific distribution of the Saccharomyces cerevisiae linker histone homolog HHO1p in the chromatin.

In virtually all eukaryotic organisms, linker DNA between nucleosomes is associated with a histone termed linker histone or histone H1. In Saccharomyces cerevisiae, HHO1 encodes a putative linker histone with very significant homology to histone H1. The encoded protein is expressed in the nucleus, but has not been shown to affect global chromatin structure, nor has its deletion shown any detect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016