Incomplete Dynamic Backtracking for Linear Pseudo-Boolean Problems
نویسنده
چکیده
Many combinatorial problems can be modeled as 0/1 integer linear programs. Problems expressed in this form are usually solved by Operations Research algorithms, but good results have also been obtained using generalised SAT algorithms based on backtracking or local search, after transformation to pseudo-Boolean form. A third class of SAT algorithm uses non-systematic backtracking to combine constraint propagation with local search-like scalability, at the cost of completeness. This paper describes such an algorithm for pseudo-Boolean models. Experimental results on a variety of problems are encouraging, in some cases yielding improved solutions or performance compared to previous algorithms.
منابع مشابه
Randomised Backtracking for Linear Pseudo-Boolean Constraint Problems
Many constraint satisfaction and optimisation problems can be expressed using linear constraints on pseudo-Boolean (0/1) variables. Problems expressed in this form are usually solved by integer programming techniques, but good results have also been obtained using generalisations of SAT algorithms based on both backtracking and local search. A recent class of algorithm uses randomised backtrack...
متن کاملSolving Linear Pseudo-Boolean Constraint Problems with Local Search
Stochastic local search is one of the most successful methods for model finding in propositional satisfiability. However, many combinatorial problems have no concise propositional encoding. In this paper, we show that domain-independent local search for satisfiability (Walksat) can be generalized to handle systems of linear pseudo-Boolean (0-1 integer) constraints, a representation that is wide...
متن کاملUsing Lower-Bound Estimates in SAT-Based Pseudo-Boolean Optimization
Linear Pseudo-Boolean constraints offer a much more compact formalism to express significant boolean problems in several areas, ranging from Artificial Intelligence to Electronic Design Automation. This paper proposes a new algorithm for the Pseudo-Boolean Optimization Problem (PBO) which integrates features from recent advances in Boolean Satisfiability (SAT) and classical branch and bound alg...
متن کاملOn Applying Cutting Planes in DLL-Based Algorithms for Pseudo-Boolean Optimization
The utilization of cutting planes is a key technique in Integer Linear Programming (ILP). However, cutting planes have seldom been applied in Pseudo-Boolean Optimization (PBO) algorithms derived from the Davis-Logemann-Loveland (DLL) procedure for Propositional Satisfiability (SAT). This paper proposes the utilization of cutting planes in a DLL-style PBO algorithm, which incorporates the most e...
متن کاملSolving Multi-objective Pseudo-Boolean Problems
Integer Linear Programs are widely used in areas such as routing problems, scheduling analysis and optimization, logic synthesis, and partitioning problems. As many of these problems have a Boolean nature, i.e., the variables are restricted to 0 and 1, so called Pseudo-Boolean solvers have been proposed. They are mostly based on SAT solvers which took continuous improvements over the past years...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals OR
دوره 130 شماره
صفحات -
تاریخ انتشار 2004