Dendritic cell maturation and chemotaxis is regulated by TRPM2-mediated lysosomal Ca2+ release.

نویسندگان

  • Adriana Sumoza-Toledo
  • Ingo Lange
  • Hanna Cortado
  • Harivadan Bhagat
  • Yasuo Mori
  • Andrea Fleig
  • Reinhold Penner
  • Santiago Partida-Sánchez
چکیده

Chemokines induce calcium (Ca(2+)) signaling and chemotaxis in dendritic cells (DCs), but the molecular players involved in shaping intracellular Ca(2+) changes remain to be characterized. Using siRNA and knockout mice, we show that in addition to inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release and store-operated Ca(2+) entry (SOCE), the transient receptor potential melastatin 2 (TRPM2) channel contributes to Ca(2+) release but not Ca(2+) influx in mouse DCs. Consistent with these findings, TRPM2 expression in DCs is restricted to endolysosomal vesicles, whereas in neutrophils, the channel localizes to the plasma membrane. TRPM2-deficient DCs show impaired maturation and severely compromised chemokine-activated directional migration as well as bacterial-induced DC trafficking to the draining lymph nodes. Defective DC chemotaxis is due to perturbed chemokine-receptor-initiated Ca(2+) signaling mechanisms, which include suppression of TRPM2-mediated Ca(2+) release and secondary modification of SOCE. DCs deficient in both TRPM2 and IP(3) receptor signaling lose their ability to perform chemotaxis entirely. These results highlight TRPM2 as a key player regulating DC chemotaxis through its function as Ca(2+) release channel and confirm ADP-ribose as a novel second messenger for intracellular Ca(2+) mobilization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRPM2 Channel-Mediated ROS-Sensitive Ca2+ Signaling Mechanisms in Immune Cells

Transient receptor potential melastatin 2 (TRPM2) proteins form Ca(2+)-permeable cationic channels that are potently activated by reactive oxygen species (ROS). ROS are produced during immune responses as signaling molecules as well as anti-microbial agents. ROS-sensitive TRPM2 channels are widely expressed in cells of the immune system and located on the cell surface as a Ca(2+) influx pathway...

متن کامل

TRPM2-mediated intracellular Zn2+ release triggers pancreatic β-cell death.

Reactive oxygen species (ROS) can cause pancreatic β-cell death by activating transient receptor potential (melastatin) 2 (TRPM2) channels. Cell death has been attributed to the ability of these channels to raise cytosolic Ca2+. Recent studies however revealed that TRPM2 channels can also conduct Zn2+, but the physiological relevance of this property is enigmatic. Given that Zn2+ is cytotoxic, ...

متن کامل

Ca2+ signaling through ryanodine receptor 1 enhances maturation and activation of human dendritic cells.

Increases in intracellular Ca2+ concentration accompany many physiological events, including maturation of dendritic cells, professional antigen-presenting cells characterized by their ability to migrate to secondary lymphoid organs where they initiate primary immune responses. The mechanism and molecules involved in the early steps of Ca2+ release in dendritic cells have not yet been defined. ...

متن کامل

Stimulation of dendritic cell functional maturation by capsid protein from chikungunya virus

Objective(s): Chikungunya virus (ChikV) infection is characterized by persistent infection in joints and lymphoid organs. The ChikV Capsid protein plays an important role in regulating virus replication. In this study, we hypothesized that capsid protein may stimulate dendritic cell (DC) activation and maturation and trigger an inflammatory response in mice. ...

متن کامل

Lysosomal Ca2+ Signaling Regulates High Glucose-Mediated Interleukin-1β Secretion via Transcription Factor EB in Human Monocytic Cells

Aberrant activation of the innate immune system, including NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome-dependent interleukin-1β (IL-1β) secretion, has been implicated in the pathogenesis of type 2 diabetes mellitus (T2DM) and its complication. Our previous study demonstrated that hyperglycemia, a hallmark characteristic of T2DM, induced NLRP3 inflammasome-dependent caspase-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 25 10  شماره 

صفحات  -

تاریخ انتشار 2011