Permeability of rat liver microsomal membrane to glucose 6-phosphate.
نویسندگان
چکیده
Light-scattering measurements of osmotically induced changes in the size of rat liver microsomal vesicles pre-equilibrated in a low-osmolality buffer revealed the following. (1) The increase in extravesicular osmolality by addition of glucose 6-phosphate or mannose 6-phosphate (25 mM each) caused a rapid shrinking of microsomal vesicles. After shrinkage, a rapid swelling phase (t1/2 approx. 22 s) was present with glucose 6-phosphate but absent with mannose 6-phosphate, indicating that the former had entered microsomal vesicles, but the latter had not. (2) Almost identical results were obtained in the absence of any glucose 6-phosphate hydrolysis, i.e. with microsomes pre-treated with 100 microM-vanadate. (3) The anion-channel blocker 4,4'-di-isothiocyanostilbene-2,2'-disulphonic acid (DIDS) suppressed the glucose 6-phosphate-induced swelling phase. (4) The swelling phase was more prolonged as the glucose 6-phosphate concentration increased (t1/2 = 16 +/- 3, 22 +/- 3 and 35 +/- 4 s with 25 mM, 37.5 mM- and 50 mM-glucose 6-phosphate respectively). The behaviour of glucose-6-phosphatase activity of intact and disrupted microsomes measured in the presence of high concentrations (less than 30 mM) of substrate also indicated the saturation of the glucose 6-phosphate permeation system by extravesicular concentrations of glucose 6-phosphate higher than 20-30 mM. Additional experiments showed that vanadate-treated microsomes pre-equilibrated with 0.1 mM- and 1.0 mM-glucose 6-phosphate (and [1-14C]glucose 6-phosphate as a tracer) rapidly (t1/2 less than 20 s) released [1-14C]glucose 6-phosphate when diluted in a glucose 6-phosphate-free medium. The efflux of [1-14C]glucose 6-phosphate was largely prevented by DIDS, allowing an evaluation of the intravesicular space of glucose 6-phosphate of approx. 1.0 microliter/mg of microsomal protein.
منابع مشابه
Fatty acyl-CoA esters inhibit glucose-6-phosphatase in rat liver microsomes.
In native rat liver microsomes glucose 6-phosphatase activity is dependent not only on the activity of the glucose-6-phosphatase enzyme (which is lumenal) but also on the transport of glucose-6-phosphate, phosphate and glucose through the respective translocases T1, T2 and T3. By using enzymic assay techniques, palmitoyl-CoA or CoA was found to inhibit glucose-6-phosphatase activity in intact m...
متن کاملMicrosomal membrane permeability and the hepatic glucose-6-phosphatase system. Interactions of the system with D-mannose 6-phosphate and D-mannose.
We have proposed that glucose-6-phosphatase (EC 3.1.3.9) is a two-component system consisting of (a) a glucose-6-P-specific transporter which mediates the movement of the hexose phosphate from the cytosol to the lumen of the endoplasmic reticulum (or cisternae of the isolated microsomal vesicle), and (b) a nonspecific phosphohydrolase-phosphotransferase localized on the luminal surface of the m...
متن کاملPermeability of Microsomal Membranes Isolated from Rat Liver
Water compartments, permeability, and the possible active translocation of various substances in rat liver microsomes were studied by using radioactive compounds and ultracentrifugation. The total water of the microsomal pellet, 3.4 microl/mg dry weight, is the sum of water in the extramicrosomal and intramicrosomal spaces, or 56 and 44%, respectively. Sucrose space accounts for 77% of the intr...
متن کاملMicrosomal Membrane Permeability and the Hepatic Glucose-6-phosphatase System
We have proposed that glucose-6.phosphatase (EC 3.1.3.9) is a two-component system consisting of (a) a glucose-6-P-specific transporter which mediates the movement of the hexose phosphate from the cytosol to the lumen of the endoplasmic reticulum (or cisternae of the isolated microsomal vesicle), and (b) a nonspecific phosphohydrolase-phosphotransferase localized on the luminal surface of the m...
متن کاملIdentification of protein components of the microsomal glucose 6-phosphate transporter by photoaffinity labelling.
The glucose-6-phosphatase system catalyses the terminal step of hepatic glucose production from both gluconeogenesis and glycogenolysis and is thus a key regulatory factor of blood glucose homoeostasis. To identify the glucose 6-phosphate transporter T1, we have performed photoaffinity labelling of human and rat liver microsomes by using the specific photoreactive glucose-6-phosphate translocas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 286 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1992