Butein sensitizes human hepatoma cells to TRAIL-induced apoptosis via extracellular signal-regulated kinase/Sp1-dependent DR5 upregulation and NF-kappaB inactivation.

نویسندگان

  • Dong-Oh Moon
  • Mun-Ock Kim
  • Yung Hyun Choi
  • Gi-Young Kim
چکیده

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces cell death in various types of cancer cells but has little or no effect on normal cells. Human hepatoma cells are resistant to TRAIL-induced apoptosis. Although butein is known to mediate anticancer, anti-inflammatory, and antioxidant activities, little is known about the mechanism of butein in terms of TRAIL-induced apoptosis of human hepatoma cells. In this study, we determined that butein enhances TRAIL-induced apoptosis in hepatoma cells through upregulation of DR5. Luciferase analysis showed that a 5'-flanking region containing four Sp1-binding sites within the DR5 promoter was enhanced by butein (-305/-300). Electrophoretic mobility shift assays and chromatin immunoprecipitation studies were used to analyze the elevation of Sp1 binding to DR5 promoter sites by butein. Point mutations of the Sp1-binding site also attenuated promoter activity. Furthermore, pretreatment of the blocking chimeric antibody and small interfering RNA for DR5 significantly suppressed TRAIL-mediated apoptosis by butein in Hep3B cells. Butein also stimulated extracellular signal-regulated kinase (ERK) activation, and the ERK inhibitor PD98059 blocked butein-induced DR5 expression and suppressed binding of Sp1 to the DR5 promoter. Additionally, generation of reactive oxygen species had no effect on cell viability, although pretreatment with N-acetyl-l-cysteine or glutathione inhibited combined treatment-induced reactive oxygen species. Indeed, butein repressed the TRAIL-mediated activation of NF-kappaB and decreased its transcriptional activity. Our results suggest that butein could sensitize certain human hepatoma cells to TRAIL-induced apoptosis through stimulating its death signaling and by repressing the survival function in these cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Butein Sensitizes Human Hepatoma Cells to TRAIL-Induced Apoptosis via Extracellular Signal-Regulated Kinase/Sp1– Dependent DR5 Upregulation and NF-κB Inactivation

Authors' A Marine Life 2Molecula Bioscienc 3Departme Medicine, B Correspon Departmen 756, Repub E-mail: im Biochemist 614-051, R 4036. E-ma

متن کامل

Sp1 is involved in 8-chloro-adenosine-upregulated death receptor 5 expression in human hepatoma cells.

8-Chloro-adenosine (8-Cl-Ado) is an adenosine derivative, which inhibits proliferation and induces apoptosis in various tumor cells. Subtoxic concentration of 8-Cl-Ado sensitizes human hepatoma cells to tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-triggered apoptosis. However, the molecular mechanism by which TRAIL cytotoxicity is amplified by 8-Cl-Ado is unknown. In the pres...

متن کامل

Inhibition of ataxia telangiectasia mutated kinase activity enhances TRAIL-mediated apoptosis in human melanoma cells.

The aim of the present study was to elucidate the effects of ataxia telangiectasia mutated (ATM) kinase on the regulation of the extrinsic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor 2/DR5-mediated death pathway in human melanoma cells. We revealed that total ATM protein levels were high in some human melanoma lines compared with normal cells. The basal levels of ac...

متن کامل

Silibinin sensitizes TRAIL-mediated apoptosis by upregulating DR5 through ROS-induced endoplasmic reticulum stress-Ca2+-CaMKII-Sp1 pathway

In this study, we addressed how silibinin enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in various cancer cells. Combined treatment with silibinin and TRAIL (silibinin/TRAIL) induced apoptosis accompanied by the activation of caspase-3, caspase-8, caspase-9, and Bax, and cytosolic accumulation of cytochrome c. Anti-apoptotic proteins such as Bcl-2, ...

متن کامل

Inhibition of Yin Yang 1-dependent repressor activity of DR5 transcription and expression by the novel proteasome inhibitor NPI-0052 contributes to its TRAIL-enhanced apoptosis in cancer cells.

TRAIL promotes apoptotic tumor cell death; however, TRAIL-resistant tumors need to be sensitized to reverse resistance. Proteasome inhibitors potentiate TRAIL apoptosis in vitro and in vivo and correlate with up-regulation of death receptor 5 (DR5) via an unknown mechanism. We hypothesized that the proteasome inhibitor NPI-0052 inhibits the transcription repressor Yin Yang 1 (YY1) which regulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 9 6  شماره 

صفحات  -

تاریخ انتشار 2010