Reversible Addition-Fragmentation Chain Transfer Polymerization of Acrylonitrile under Irradiation of Blue LED Light
نویسندگان
چکیده
Compared to unhealthy UV or γ-ray and high-energy-consumption thermal external stimuli, the promising light emitting diode (LED) external stimulus has some outstanding technological merits such as narrow wavelength distribution, low heat generation and energy consumption, and safety for human beings. In this work, a novel reversible addition-fragmentation transfer (RAFT) polymerization system for acrylonitrile (AN) was developed under the irradiation of blue LED light at room temperature, using 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) as a novel radical initiator and 2-cyanoprop-2-yl-1-dithionaphthalate (CPDN) as the typical chain transfer agent. Well-defined polyacrylonitrile (PAN) with a controlled molecular weight and narrow molecular weight distribution was successfully synthesized. This strategy may provide another effective method for scientific researchers or the industrial community to synthesize a PAN-based precursor of carbon fibers.
منابع مشابه
A Green Platform for Preparation of the Well-Defined Polyacrylonitrile: 60Co -ray Irradiation-Initiated RAFT Polymerization at Room Temperature
60Co γ-ray irradiation-initiated reversible addition–fragmentation chain transfer (RAFT) polymerization at room temperature with 2-cyanoprop-2-yl 1-dithionaphthalate (CPDN) as the chain transfer agent was first applied to acrylonitrile (AN) polymerization, providing a “green” platform for preparing polyacrylonitrile (PAN)-based carbon fibers using an environment-friendly energy source. Various ...
متن کاملUtilizing the electron transfer mechanism of chlorophyll a under light for controlled radical polymerization.
Efficient photoredox catalysts containing transition metals, such as iridium and ruthenium, to initiate organic reactions and polymerization under visible light have recently emerged. However, these catalysts are composed of rare metals, which limit their applications. In this study, we report an efficient photoinduced living radical polymerization process that involves the use of chlorophyll a...
متن کاملSynthesis of Star Poly(N-vinylcarbazole) by Microwave-Assisted Reversible Addition-Fragmentation Chain Transfer
Controlled radical polymerization of N-vinylcarbazole (NVK) via microwave-assisted reversible addition-fragmentation chain transfer (RAFT) polymerization is described. As chain transfer agent, 1,3,5-benzyl tri (diethyldithiocarbamate), was used. The chain transfer agent, containing a 1.3.5-trisubstituted benzene ring as core and three dithiocarbamate functionalities attached through an intermed...
متن کاملPhase transition and aggregation behaviour of an UCST-type copolymer poly(acrylamide-co-acrylonitrile) in water: effect of acrylonitrile content, concentration in solution, copolymer chain length and presence of electrolyte.
An UCST-type copolymer of acrylamide (AAm) and acrylonitrile (AN) (poly(AAm-co-AN)) was prepared by reversible addition fragmentation chain transfer (RAFT) polymerization and its temperature-induced phase transition and aggregation behaviour studied by turbidimetry, static and dynamic light scattering, small angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM) me...
متن کاملInterplay of reversible chain transfer and comonomer incorporation reactions in coordination copolymerization of ethylene/1–hexene
Coordinative chain transfer polymerization (CCTP) has opened a new path for the development of novel products like olefin block copolymers and chain-end functional polyolefins. However, conflicting results are frequently reported on the catalyst performance including activity and comonomer selectivity under CCTP conditions. Here we have selected two catalysts including rac-ethylenebis(1-η5-inde...
متن کامل