Spatiotemporal independent component analysis of event-related fMRI data using skewed probability density functions.
نویسندگان
چکیده
We introduce two independent component analysis (ICA) methods, spatiotemporal ICA (stICA) and skew-ICA, and demonstrate the utility of these methods in analyzing synthetic and event-related fMRI data. First, stICA simultaneously maximizes statistical independence over both time and space. This contrasts with conventional ICA methods, which maximize independence either over time only or over space only; these methods often yield physically improbable solutions. Second, skew-ICA is based on the assumption that images have skewed probability density functions (pdfs), an assumption consistent with spatially localized regions of activity. In contrast, conventional ICA is based on the physiologically unrealistic assumption that images have symmetric pdfs. We combine stICA and skew-ICA, to form skew-stICA, and use it to analyze synthetic data and data from an event-related, left-right visual hemifield fMRI experiment. Results obtained with skew-stICA are superior to those of principal component analysis, spatial ICA (sICA), temporal ICA, stICA, and skew-sICA. We argue that skew-stICA works because it is based on physically realistic assumptions and that the potential of ICA can only be realized if such prior knowledge is incorporated into ICA methods.
منابع مشابه
Spatiotemporal dynamics of single-letter reading: a combined ERP-FMRI study.
This work investigates the neural correlates of single-letter reading by combining event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI), thus exploiting their complementary spatiotemporal resolutions. Three externally-paced reading tasks were administered with an event-related design: passive observation of letters and symbols and active reading aloud of letters. ERP...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملFuncICA for Time Series Pattern Discovery
We introduce FuncICA, a new independent component analysis method for pattern discovery in inherently functional data, such as time series data. We show how applying the dual of temporal ICA to temporal data, and likewise applying the dual of spatiotemporal ICA to spatiotemporal data, enables independent component regularization not afforded by the primal forms applied to their original domains...
متن کاملOptimizing Within-Subject Experimental Designs for jICA of Multi-Channel ERP and fMRI
Joint independent component analysis (jICA) can be applied within subject for fusion of multi-channel event-related potentials (ERP) and functional magnetic resonance imaging (fMRI), to measure brain function at high spatiotemporal resolution (Mangalathu-Arumana et al., 2012). However, the impact of experimental design choices on jICA performance has not been systematically studied. Here, the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 15 2 شماره
صفحات -
تاریخ انتشار 2002