Ionic effects in collapse of polyelectrolyte brushes.
نویسندگان
چکیده
We investigated the effect of counterion valence on the structure and swelling behavior of polyelectrolyte brushes using a nonlocal density functional theory that accounts for the excluded-volume effects of all ionic species and intrachain and electrostatic correlations. It was shown that charge correlation in the presence of multivalent counterions results in collapse of a polyelectrolyte brush at an intermediate polyion grafting density. At high grafting density, the brush reswells in a way similar to that in a monovalent ionic solution. In the presence of multivalent counterions, the nonmonotonic swelling of a polyelectrolyte brush in response to the increase of the grafting density can be attributed to a competition of the counterion-mediated electrostatic attraction between polyions with the excluded-volume effect of all ionic species. While a polyelectrolyte brush exhibits an "osmotic brush" regime at low salt concentration and a "salted brush" regime at high salt concentration regardless of the counterion valence, we found a smoother transition as the valence of the counterions increases. As observed in recent experiments, a quasi-power-law dependence of the brush thickness on the concentration ratio can be identified when the monovalent counterions are replaced with trivalent counterions at a fixed ionic strength.
منابع مشابه
Lateral Structure Formation in Polyelectrolyte Brushes Induced by Multivalent Ions
We provide a theoretical model for the collapse of polyelectrolyte brushes in the presence of multivalent ions, focusing on the formation of lateral inhomogeneties in the collapsed state. Polyelectrolyte brushes are important in a variety of applications, including stabilizing colloidal particles and lubricating surfaces. Many uses rely on the extension of the densely grafted polymer chains fro...
متن کاملBehavior of Weak Polyelectrolyte Brushes in Mixed Salt Solutions
Hydrophilic and hydrophobic weak polybasic brushes immersed in aqueous solutions of mixed salt counterions are considered using a mean-field numerical self-consistent field approach. On top of the solvent quality of the polymer, the counterion-solvent interactions are accounted for by implementing Flory-Huggins interaction parameters. We show that ion specificity within the brush can bring abou...
متن کاملOn the monomer density of grafted polyelectrolyte brushes and their interactions.
Most of the modern theories of grafted polyelectrolyte brushes are valid only for moderate stretching of the polyelectrolyte. However, particularly at low ionic strength and high grafting densities, even a moderate charge of the polyelectrolyte can generate a strong stretching. A simple mean field model for strongly stretched grafted polyelectrolyte brushes is suggested, based on an approximate...
متن کاملInteractions between planar polyelectrolyte brushes: effects of stiffness and salt
We perform molecular dynamics simulations and develop a theoretical approach based on the twodimensional cylindrical cell model to investigate the salt-dependent interactions between two sparselygrafted, rigid polyelectrolyte brushes. Extending our previous study, (A. Wynveen and C. N. Likos, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2009, 80, 010801), we find that the repulsive force ...
متن کاملInteraction of proteins with linear polyelectrolytes and spherical polyelectrolyte brushes in aqueous solution.
We review recent experiments on the interaction of proteins with anionic polyelectrolytes in aqueous solution. Data from the literature demonstrate that proteins can form soluble complexes with linear polyelectrolytes even on the "wrong side" of the isoelectric point, that is, for pH values above the isoelectric point of the proteins under which the polyelectrolytes and the proteins are like-ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 112 26 شماره
صفحات -
تاریخ انتشار 2008