A bioturbation classification of European marine infaunal invertebrates
نویسندگان
چکیده
Bioturbation, the biogenic modification of sediments through particle reworking and burrow ventilation, is a key mediator of many important geochemical processes in marine systems. In situ quantification of bioturbation can be achieved in a myriad of ways, requiring expert knowledge, technology, and resources not always available, and not feasible in some settings. Where dedicated research programmes do not exist, a practical alternative is the adoption of a trait-based approach to estimate community bioturbation potential (BPc). This index can be calculated from inventories of species, abundance and biomass data (routinely available for many systems), and a functional classification of organism traits associated with sediment mixing (less available). Presently, however, there is no agreed standard categorization for the reworking mode and mobility of benthic species. Based on information from the literature and expert opinion, we provide a functional classification for 1033 benthic invertebrate species from the northwest European continental shelf, as a tool to enable the standardized calculation of BPc in the region. Future uses of this classification table will increase the comparability and utility of large-scale assessments of ecosystem processes and functioning influenced by bioturbation (e.g., to support legislation). The key strengths, assumptions, and limitations of BPc as a metric are critically reviewed, offering guidelines for its calculation and application.
منابع مشابه
Statistical independence of escalatory ecological trends in Phanerozoic marine invertebrates.
Ecological interactions, such as predation and bioturbation, are thought to be fundamental determinants of macroevolutionary trends. A data set containing global occurrences of Phanerozoic fossils of benthic marine invertebrates shows escalatory trends in the relative frequency of ecological groups, such as carnivores and noncarnivorous infaunal or mobile organisms. Associations between these t...
متن کاملFrequency of injury and the ecology of regeneration in marine benthic invertebrates.
Many marine invertebrates are able to regenerate lost tissue following injury, but regeneration can come at a cost to individuals in terms of reproduction, behavior and physiological condition, and can have effects that reach beyond the individual to impact populations, communities, and ecosystems. For example, removal and subsequent regeneration of clams' siphons, polychaetes' segments, and br...
متن کاملBioturbation in a Declining Oxygen Environment, in situ Observations from Wormcam
Bioturbation, the displacement and mixing of sediment particles by fauna or flora, facilitates life supporting processes by increasing the quality of marine sediments. In the marine environment bioturbation is primarily mediated by infaunal organisms, which are susceptible to perturbations in their surrounding environment due to their sedentary life history traits. Of particular concern is hypo...
متن کاملMean mixed depth of sediments: The wherefore and the why
The activities and consequently the bioturbational effects of deposit-feeding organisms are largely restricted to a narrow surficial zone of marine sediments with a worldwide, environmentally invariant mean of 9.8 cm with a standard deviation of 4.5 cm. Currently available theories of infaunal behavior cannot predict quantitatively this observation. A new simple model that accounts for the feed...
متن کاملThe evolutionary ecology of biotic association in a megadiverse bivalve superfamily: sponsorship required for permanent residency in sediment.
BACKGROUND Marine lineage diversification is shaped by the interaction of biotic and abiotic factors but our understanding of their relative roles is underdeveloped. The megadiverse bivalve superfamily Galeommatoidea represents a promising study system to address this issue. It is composed of small-bodied clams that are either free-living or have commensal associations with invertebrate hosts. ...
متن کامل