Common Tangents to Four Unit Balls in R3

نویسندگان

  • I. G. MacDonald
  • János Pach
  • Thorsten Theobald
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Enumerative Geometry Framework for Algorithmic Line Problems in $\mathbb R^3$

We investigate the enumerative geometry aspects of algorithmic line problems when the admissible bodies are balls or polytopes. For this purpose, we study the common tangent lines/transversals to k balls of arbitrary radii and 4− k lines in R3. In particular, we compute tight upper bounds for the maximum number of real common tangents/transversals in these cases. Our results extend the results ...

متن کامل

Common Tangents to Four Unit Balls in R

We answer a question of David Larman, by proving the following result. Any four unit balls in 3-dimensional space, whose centers are not collinear, have at most twelve common tangent lines. This bound is tight.

متن کامل

Common Tangents to Spheres in R3

We prove that four spheres in R3 have infinitely many real common tangents if and only if they have aligned centers and at least one real common tangent.

متن کامل

Lines Tangent to Four Triangles in Three-Dimensional Space

We investigate the lines tangent to four triangles in R3. By a construction, there can be as many as 62 tangents. We show that there are at most 162 connected components of tangents, and at most 156 if the triangles are disjoint. In addition, if the triangles are in (algebraic) general position, then the number of tangents is finite and it is always even.

متن کامل

Lines Avoiding Unit Balls in Three Dimensions

Let B be a set of n unit balls in R3. We show that the combinatorial complexity of the space of lines in R3 that avoid all the balls of B is O(n3+ε), for any ε > 0. This result has connections to problems in visibility, ray shooting, motion planning, and geometric optimization.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2001