808 nm photocontrolled UCL imaging guided chemo/photothermal synergistic therapy with single UCNPs-CuS@PAA nanocomposite.

نویسندگان

  • Bei Liu
  • Chunxia Li
  • Zhongxi Xie
  • Zhiyao Hou
  • Ziyong Cheng
  • Dayong Jin
  • Jun Lin
چکیده

Recently, incorporating multiple components into one nanostructured matrix to construct a multifunctional nanomedical platform has attracted more and more attention for simultaneous anticancer diagnosis and therapy. Herein, a novel anti-cancer nanoplatform has been successfully developed by coating a uniform shell of poly(acrylic acid) (PAA) on the surface of CuS-decorated upconversion nanoparticles (UCNPs). Benefiting from the enhanced 808 nm-excited UCL intensity of the multilayer UCNPs, the unique photothermal properties of CuS and the pH-responsive drug release capacity of the PAA shell, such a nanoplatform design of UCNPs-CuS@PAA (labeled UCP) offers a new route to achieve 808 nm-excited UCL imaging guided chemo/photothermal combination therapy. We have found that the combined chemo/photothermal therapy can significantly improve the therapeutic efficacy compared with chemotherapy or photothermal therapy (PTT) alone. Moreover, the pH/NIR-dependent drug delivery properties, 808 nm-excited UCL imaging, as well as in vitro/in vivo biocompatibility tests were also investigated in detail. These results show promising applications of UCP nanoparticles as a novel theranostic agent for the detection and treatment of tumors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facile fabrication of a magnetically smart PTX-loaded Cys-Fe3O4/CuS@BSA nano-drug for imaging-guided chemo-photothermal therapy.

In this study, a multifunctional nano-drug (PTX-loaded Cys-Fe3O4/CuS@BSA nanocomposite), which performs well in hydrophobic drug delivery, magnetic resonance imaging (MRI) and chemo-photothermal combination therapy, has been successfully synthesized via a facile method with several biocompatible agents. The characterization verified that our as-obtained nanocarrier has a preferable average diam...

متن کامل

Doxorubicin-conjugated CuS nanoparticles for efficient synergistic therapy triggered by near-infrared light.

To integrate photothermal therapy (PTT) with chemotherapy for improving anticancer efficiency, we developed a novel and multifunctional doxorubicin (DOX) conjugated copper sulfide nanoparticle (CuS-DOX NP) drug delivery system using hydrazone bonds to conjugate carboxyl-functionalized copper sulfide nanoparticles (CuS NPs) and DOX. On the other hand, the hydrazone bonds could be used for improv...

متن کامل

Novel Cs-Based Upconversion Nanoparticles as Dual-Modal CT and UCL Imaging Agents for Chemo-Photothermal Synergistic Therapy

Lanthanide-based contrast agents have attracted increasing attention for their unique properties and potential applications in cancer theranostics. To date, many of these agents have been studied extensively in cells and small animal models. However, performance of these theranostic nanoparticles requires further improvement. In this study, a novel CsLu2F7:Yb,Er,Tm-based visual therapeutic plat...

متن کامل

Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy.

Mn-based nanoparticles have been regarded as a new class of probes for magnetic resonance imaging (MRI), but their low relaxivity is the major obstacle for applications in vivo. Herein, we designed and constructed a multifunctional nanotheranostic (FA-Mn3O4@PDA@PEG) for MRI guided combinatorial chemo-/photothermal therapy (PTT) for cancer. The ultrahigh relaxivity of 14.47 mM-1 s-1 makes the na...

متن کامل

Polyaniline-coated upconversion nanoparticles with upconverting luminescent and photothermal conversion properties for photothermal cancer therapy

In this study, we developed a nanosystem based on upconversion nanoparticles (UCNPs) coated with a layer of polyaniline nanoparticles (PANPs). The UCNP induces upconversion luminescence for imaging and photothermal conversion properties are due to PANPs. In vitro experiments showed that the UCNPs-PANPs were nontoxic to cells even at a high concentration (800 µg mL(-1)). Blood analysis and histo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 45 33  شماره 

صفحات  -

تاریخ انتشار 2016