Area preserving nontwist maps: periodic orbits and transition to chaos

نویسنده

  • D. del-Castillo-Negrete
چکیده

Area preserving nontwist maps, i.e. maps that violate the twist condition, are considered. A representative example, the standard nontwist map that violates the twist condition along a curve called the shearless curve, is studied in detail. Using symmetry lines and involutions, periodic orbits are computed and two bifurcations analyzed: periodic orbit collisions and separatrix reconnection. The transition to chaos due to the destruction of the shearless curve is studied. This problem is outside the applicability of the standard KAM (Kolmogorov-Arnold-Moser) theory. Using the residue criterion we compute the critical parameter values for the destruction of the shearless curve with rotation number equal to the inverse golden mean. The results indicate that the destruction of this curve is fundamentally different from the destruction of the inverse golden mean curve in twist maps. It is shown that the residues converge to a six-cycle at criticality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renormalization and Transition to Chaos in Area Preserving Nontwist Maps

The problem of transition to chaos, i.e. the destruction of invariant circles or KAM (Kolmogorov-Arnold-Moser) curves, in area preserving nontwist maps is studied within the renormalization group framework. Nontwist maps are maps for which the twist condition is violated along a curve known as the shearless curve. In renormalization language this problem is that of nding and studying the xed po...

متن کامل

Transport properties in nontwist area-preserving maps.

Nontwist systems, common in the dynamical descriptions of fluids and plasmas, possess a shearless curve with a concomitant transport barrier that eliminates or reduces chaotic transport, even after its breakdown. In order to investigate the transport properties of nontwist systems, we analyze the barrier escape time and barrier transmissivity for the standard nontwist map, a paradigm of such sy...

متن کامل

Resonances and Twist in Volume-Preserving Mappings

The phase space of an integrable volume-preserving map with one action is foliated by a oneparameter family of invariant tori. Perturbations lead to chaotic dynamics with interesting transport properties. We show that near a rank-one resonant torus the mapping can be reduced to a volume-preserving standard map. This map is a twist map only when the frequency map crosses the resonance curve tran...

متن کامل

Magnetic Field Lines, Hamiltonian Dynamics, and Nontwist Systems

Magnetic field lines typically do not behave as described in the symmetrical situations treated in conventional physics textbooks. Instead, they behave in a chaotic manner; in fact, magnetic field lines are trajectories of Hamiltonian systems. Consequently the quest for fusion energy has interwoven, for 50 years, the study of magnetic field configurations and Hamiltonian systems theory. The man...

متن کامل

Adaptive Set-Oriented Computation of Topological Horseshoe Factors in Area and Volume Preserving Maps

We describe an automatic chaos verification scheme based on set oriented numerical methods, which is especially well suited to the study of area and volume preserving diffeomorphisms. The novel feature of the scheme is an iterative algorithm for approximating connecting orbits between collections of hyperbolic fixed and periodic points with greater and greater accuracy. The algorithm is geometr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003