Bayesian Modeling of Biomolecular Assemblies with Cryo-EM Maps

نویسنده

  • Michael Habeck
چکیده

A growing array of experimental techniques allows us to characterize the three-dimensional structure of large biological assemblies at increasingly higher resolution. In addition to X-ray crystallography and nuclear magnetic resonance in solution, new structure determination methods such cryo-electron microscopy (cryo-EM), crosslinking/mass spectrometry and solid-state NMR have emerged. Often it is not sufficient to use a single experimental method, but complementary data need to be collected by using multiple techniques. The integration of all datasets can only be achieved by computational means. This article describes Inferential structure determination, a Bayesian approach to integrative modeling of biomolecular complexes with hybrid structural data. I will introduce probabilistic models for cryo-EM maps and outline Markov chain Monte Carlo algorithms for sampling model structures from the posterior distribution. I will focus on rigid and flexible modeling with cryo-EM data and discuss some of the computational challenges of Bayesian inference in the context of biomolecular modeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrative Modeling of Macromolecular Assemblies from Low to Near-Atomic Resolution

While conventional high-resolution techniques in structural biology are challenged by the size and flexibility of many biological assemblies, recent advances in low-resolution techniques such as cryo-electron microscopy (cryo-EM) and small angle X-ray scattering (SAXS) have opened up new avenues to define the structures of such assemblies. By systematically combining various sources of structur...

متن کامل

Accurate flexible fitting of high-resolution protein structures into cryo-electron microscopy maps using coarse-grained pseudo-energy minimization.

Cryo-electron microscopy (cryo-EM) has been widely used to explore conformational states of large biomolecular assemblies. The detailed interpretation of cryo-EM data requires the flexible fitting of a known high-resolution protein structure into a low-resolution cryo-EM map. To this end, we have developed what we believe is a new method based on a two-bead-per-residue protein representation, a...

متن کامل

ATTRACT-EM: A New Method for the Computational Assembly of Large Molecular Machines Using Cryo-EM Maps

Many of the most important functions in the cell are carried out by proteins organized in large molecular machines. Cryo-electron microscopy (cryo-EM) is increasingly being used to obtain low resolution density maps of these large assemblies. A new method, ATTRACT-EM, for the computational assembly of molecular assemblies from their components has been developed. Based on concepts from the prot...

متن کامل

Cross-validation in cryo-EM-based structural modeling.

Single-particle cryo-EM is a powerful approach to determine the structure of large macromolecules and assemblies thereof in many cases at subnanometer resolution. It has become popular to refine or flexibly fit atomic models into density maps derived from cryo-EM experiments. These density maps are typically significantly lower in resolution than electron density maps obtained from X-ray diffra...

متن کامل

Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta

Cryo-EM has revealed the structures of many challenging yet exciting macromolecular assemblies at near-atomic resolution (3-4.5Å), providing biological phenomena with molecular descriptions. However, at these resolutions, accurately positioning individual atoms remains challenging and error-prone. Manually refining thousands of amino acids - typical in a macromolecular assembly - is tedious and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017