Contribution of Kv2.1 channels to the delayed rectifier current in freshly dispersed smooth muscle cells from rabbit urethra.

نویسندگان

  • B Kyle
  • E Bradley
  • S Ohya
  • G P Sergeant
  • N G McHale
  • K D Thornbury
  • M A Hollywood
چکیده

We have characterized the native voltage-dependent K(+) (K(v)) current in rabbit urethral smooth muscle cells (RUSMC) and compared its pharmacological and biophysical properties with K(v)2.1 and K(v)2.2 channels cloned from the rabbit urethra and stably expressed in human embryonic kidney (HEK)-293 cells (HEK(Kv2.1) and HEK(Kv2.2)). RUSMC were perfused with Hanks' solution at 37°C and studied using the patch-clamp technique with K(+)-rich pipette solutions. Cells were bathed in 100 nM Penitrem A (Pen A) to block large-conductance Ca(2+)-activated K(+) (BK) currents and depolarized to +40 mV for 500 ms to evoke K(v) currents. These were unaffected by margatoxin, κ-dendrotoxin, or α-dendrotoxin (100 nM, n = 3-5) but were blocked by stromatoxin-1 (ScTx, IC(50) ∼130 nM), consistent with the idea that the currents were carried through K(v)2 channels. RNA was detected for K(v)2.1, K(v)2.2, and the silent subunit K(v)9.3 in urethral smooth muscle. Immunocytochemistry showed membrane staining for both K(v)2 subtypes and K(v)9.3 in isolated RUSMC. HEK(Kv2.1) and HEK(Kv2.2) currents were blocked in a concentration-dependent manner by ScTx, with estimated IC(50) values of ∼150 nM (K(v)2.1, n = 5) and 70 nM (K(v)2.2, n = 6). The mean half-maximal voltage (V(1/2)) of inactivation of the USMC K(v) current was -56 ± 3 mV (n = 9). This was similar to the HEK(Kv2.1) current (-55 ± 3 mV, n = 13) but significantly different from the HEK(Kv2.2) currents (-30 ± 3 mV, n = 11). Action potentials (AP) evoked from RUSMC studied under current-clamp mode were unaffected by ScTx. However, when ScTx was applied in the presence of Pen A, the AP duration was significantly prolonged. Similarly, ScTx increased the amplitude of spontaneous contractions threefold, but only after Pen A application. These data suggest that K(v)2.1 channels contribute significantly to the K(v) current in RUSMC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contribution of Kv 2 . 1 channels to the delayed rectifier current in freshly 1 dispersed smooth muscle cells from rabbit urethra

47 48 We have characterized the native voltage-dependent K + (K v) current in rabbit urethral smooth 49 muscle cells (RUSMC) and compared its pharmacological and biophysical properties with 50 K v 2.1 and K v 2.2 channels cloned from the rabbit urethra and stably expressed in HEK 293 51 cells (HEK Kv2.1 and HEK Kv2.2). RUSMC were perfused with Hanks' solution at 37°C and 52 studied using the pa...

متن کامل

Existence of a delayed rectifier K+ current in the membrane of human embryonic stem cel

Introduction: Human embryonic stem cells (hESCs) are pluripotent cells that can proliferate and differentiate to many cell types. Their electrophysiological properties have not yet been chracterzed. In this study, the passive properties (such as resting membrane potential, input resistance and capacitance) and the contribution of delayed rectifier K+ channel currents to the membrane conducta...

متن کامل

AGI November 40/5

Xu, Chuanli, Yanjie Lu, Guanghua Tang, and Rui Wang. Expression of voltage-dependent K1 channel genes in mesenteric artery smooth muscle cells. Am. J. Physiol. 277 (Gastrointest. Liver Physiol. 40): G1055–G1063, 1999.— Molecular basis of native voltage-dependent K1 (Kv) channels in smooth muscle cells (SMCs) from rat mesenteric arteries was investigated. The whole cell patch-clamp study reveale...

متن کامل

Specialised pacemaking cells in the rabbit urethra.

1. Collagenase dispersal of strips of rabbit urethra yielded, in addition to normal spindle-shaped smooth muscle cells, a small proportion of branched cells which resembled the interstitial cells of Cajal dispersed from canine colon. These were clearly distinguishable from smooth muscle in their appearance under the phase-contrast microscope, their immunohistochemistry and their ultrastructure....

متن کامل

Molecular composition of 4-aminopyridine-sensitive voltage-gated K(+) channels of vascular smooth muscle.

Voltage-gated K(+) channels (Kv) play a critical role in regulating arterial tone by modulating the membrane potential of vascular smooth muscle cells. Our previous work demonstrated that the dominant 4-aminopyridine (4-AP)-sensitive, delayed rectifier Kv current of rabbit portal vein (RPV) myocytes demonstrates similar 4-AP sensitivity and biophysical properties to Kv1alpha-containing channels...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 301 5  شماره 

صفحات  -

تاریخ انتشار 2011