Computational linear algebra over finite fields
نویسندگان
چکیده
∗Université de Grenoble; Laboratoire Jean Kuntzmann, (umr CNRS 5224, Grenoble INP, INRIA, UJF, UPMF); [email protected]; 51, rue des Mathématiques, BP 53X, F-38041 Grenoble, France. †INRIA, Université de Grenoble; Laboratoire LIG (umr CNRS 5217, Grenoble INP, INRIA, UJF, UPMF); [email protected]; ENSIMAG Antenne de Montbonnot, 51, avenue Jean Kuntzmann, F-38330 Montbonnot Saint-Martin, France.
منابع مشابه
Classical Wavelet Transforms over Finite Fields
This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...
متن کاملClassical wavelet systems over finite fields
This article presents an analytic approach to study admissibility conditions related to classical full wavelet systems over finite fields using tools from computational harmonic analysis and theoretical linear algebra. It is shown that for a large class of non-zero window signals (wavelets), the generated classical full wavelet systems constitute a frame whose canonical dual are classical full ...
متن کاملEfficient Calculation of the Weight Distributions for Linear Codes over Large Finite Fields
In an error correcting code, the performance of a specific linear code is dependent on the minimum weight and the weight distribution of the code. Therefore it is very importance to know or calculate the minimum weight and the weight distribution of a code. In this paper we propose a very efficient calculation method for the minimum weight and the weight distribution for linear codes over large...
متن کاملDense Linear Algebra over Finite Fields: the FFLAS and FFPACK packages
In the past two decades, some major efforts have been made to reduce exact (e.g. integer, rational, polynomial) linear algebra problems to matrix multiplication in order to provide algorithms with optimal asymptotic complexity. To provide efficient implementations of such algorithms one need to be careful with the underlying arithmetic. It is well known that modular techniques such as the Chine...
متن کاملHessenberg Decomposition of Matrix Fields and Bounded Operator Fields
Hessenberg decomposition is the basic tool used in computational linear algebra to approximate the eigenvalues of a matrix. In this article, we generalize Hessenberg decomposition to continuous matrix fields over topological spaces. This works in great generality: the space is only required to be normal and to have finite covering dimension. As applications, we derive some new structure results...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1204.3735 شماره
صفحات -
تاریخ انتشار 2012