Mechanism of ribonuclease A endocytosis: analogies to cell-penetrating peptides.
نویسندگان
چکیده
Pancreatic-type ribonucleases can exert toxic activity by catalyzing the degradation of cellular RNA. Their ability to enter cells is essential for their cytotoxicity. Here, we determine the mechanism by which bovine pancreatic ribonuclease (RNase A) enters human cells. Inhibiting clathrin-dependent endocytosis with dynasore or chlorpromazine decreases RNase A-uptake by ~70%. Limited colocalization between RNase A and transferrin indicates that RNase A is not routed through recycling endosomes. Instead, vesicular staining of RNase A overlaps substantially with that of nona-arginine and the cationic peptide corresponding to residues 47-57 of the HIV-1 TAT protein. At low concentrations (<5 μM), internalization of RNase A and these cell-penetrating peptides (CPPs) is inhibited by chlorpromazine as well as the macropinocytosis inhibitors cytochalasin D and 5-(N-ethyl-N-isopropyl)amiloride to a similar extent, indicative of common endocytic mechanism. At high concentrations, CPPs adopt a nonendocytic mechanism of cellular entry that is not shared by RNase A. Collectively, these data suggest that RNase A is internalized via a multipathway mechanism that involves both clathrin-coated vesicles and macropinosomes. The parallel between the uptake of RNase A and CPPs validates reference to RNase A as a "cell-penetrating protein".
منابع مشابه
Cell penetrating and transytosing peptides: powerful strategies for oral insulin delivery
Insulin is essential for type 1 and advanced type 2 diabetes to maintain blood glucose levels and increase the patient’s longevity. Frequent subcutaneous insulin injections are usually associated with pain, local tissue necrosis, infection and nerve damage. Recently, a number of new delivery methods such as oral insulin delivery have been developed to overcome these limitations and increase pa...
متن کاملArginine residues are more effective than lysine residues in eliciting the cellular uptake of onconase.
Onconase is an amphibian member of the pancreatic ribonuclease family of enzymes that is in clinical trials for the treatment of cancer. Onconase, which has an abundance of lysine residues, is internalized by cancer cells through endocytosis in a mechanism similar to that of cell-penetrating peptides. Here, we compare the effect of lysine versus arginine residues on the biochemical attributes n...
متن کاملOn the mechanisms of the internalization of S4(13)-PV cell-penetrating peptide.
Cell-penetrating peptides have been shown to translocate across eukaryotic cell membranes through a temperature-insensitive and energy-independent mechanism that does not involve membrane receptors or transporters. Although cell-penetrating peptides have been successfully used to mediate the intracellular delivery of a wide variety of molecules of pharmacological interest both in vitro and in v...
متن کاملThe membrane repair response masks membrane disturbances caused by cell-penetrating peptide uptake.
Although cell-penetrating peptides are able to deliver cargo into cells, their uptake mechanism is still not fully understood and needs to be elucidated to improve their delivery efficiency. Herein, we present evidence of a new mechanism involved in uptake, the membrane repair response. Recent studies have suggested that there might be a direct penetration of peptides in parallel with different...
متن کاملCell-penetrating peptides in protein mimicry and oligonucleotide delivery Applications and mechanisms
The plasma membrane separates the interior and exterior of the cell by functioning as a barrier, which regulates and restricts entry of molecules into the cell. Consequently, the plasma membrane imposes a major hurdle for passage of many hydrophilic pharmaceutical agents into the cell. A group of peptides, denoted cell-penetrating peptides (CPPs) was found about a decade ago to be able to trans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 50 39 شماره
صفحات -
تاریخ انتشار 2011