Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules
نویسندگان
چکیده
Successful predictions of peptide MHC binding typically require a large set of binding data for the specific MHC molecule that is examined. Structure based prediction methods promise to circumvent this requirement by evaluating the physical contacts a peptide can make with an MHC molecule based on the highly conserved 3D structure of peptide:MHC complexes. While several such methods have been described before, most are not publicly available and have not been independently tested for their performance. We here implemented and evaluated three prediction methods for MHC class II molecules: statistical potentials derived from the analysis of known protein structures; energetic evaluation of different peptide snapshots in a molecular dynamics simulation; and direct analysis of contacts made in known 3D structures of peptide:MHC complexes. These methods are ab initio in that they require structural data of the MHC molecule examined, but no specific peptide:MHC binding data. Moreover, these methods retain the ability to make predictions in a sufficiently short time scale to be useful in a real world application, such as screening a whole proteome for candidate binding peptides. A rigorous evaluation of each methods prediction performance showed that these are significantly better than random, but still substantially lower than the best performing sequence based class II prediction methods available. While the approaches presented here were developed independently, we have chosen to present our results together in order to support the notion that generating structure based predictions of peptide:MHC binding without using binding data is unlikely to give satisfactory results.
منابع مشابه
پیشرفت های جدید در شناخت اسپوندیلوآرتروپاتی ها
In last few years, numerous observations and studies on pathogenesis of spondyloarthropathies have been published and an animal model which confirms the associations of new information is now available. Bacteria which are responsible for reactive arthritis all can remain in the cells for long time. Molecules of class I MHC are able to present the intracellular peptides to immune system. B27 mol...
متن کاملSubtle conformational changes induced in major histocompatibility complex class II molecules by binding peptides.
Intracellular trafficking of major histocompatibility complex (MHC) class II molecules is characterized by passage through specialized endocytic compartment(s) where antigenic peptides replace invariant chain fragments in the presence of the DM protein. These changes are accompanied by structural transitions of the MHC molecules that can be visualized by formation of compact SDS-resistant dimer...
متن کاملAnti-peptide antibody blocks peptide binding to MHC class I molecules in the endoplasmic reticulum.
The finding that MHC class I molecules are physically associated with the TAP transporter has suggested that peptides may be directly transported into the binding groove of the class I molecules rather than into the lumen of the endoplasmic reticulum (ER) where they subsequently would encounter class I molecules by diffusion. Such a mechanism would protect peptides from peptidases in the ER and...
متن کاملAutoantigen-independent deletion of diabetogenic CD4+ thymocytes by protective MHC class II molecules.
Some MHC class II genes provide dominant resistance to certain autoimmune diseases via mechanisms that remain unclear. We have shown that thymocytes bearing a highly diabetogenic, I-Ag7-restricted beta-cell-reactive TCR (4.1-TCR) undergo negative selection in diabetes-resistant H-2g7/x mice by engaging several different antidiabetogenic MHC class II molecules on thymic (but not peripheral) hemo...
متن کاملA Systematic Assessment of MHC Class II Peptide Binding Predictions and Evaluation of a Consensus Approach
The identification of MHC class II restricted peptide epitopes is an important goal in immunological research. A number of computational tools have been developed for this purpose, but there is a lack of large-scale systematic evaluation of their performance. Herein, we used a comprehensive dataset consisting of more than 10,000 previously unpublished MHC-peptide binding affinities, 29 peptide/...
متن کامل