ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale.

نویسندگان

  • M J Harvey
  • G Giupponi
  • G De Fabritiis
چکیده

The high arithmetic performance and intrinsic parallelism of recent graphical processing units (GPUs) can offer a technological edge for molecular dynamics simulations. ACEMD is a production-class biomolecular dynamics (MD) engine supporting CHARMM and AMBER force fields. Designed specifically for GPUs it is able to achieve supercomputing scale performance of 40 ns/day for all-atom protein systems with over 23 000 atoms. We provide a validation and performance evaluation of the code and run a microsecond-long trajectory for an all-atom molecular system in explicit TIP3P water on a single workstation computer equipped with just 3 GPUs. We believe that microsecond time scale molecular dynamics on cost-effective hardware will have important methodological and scientific implications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating the Strength of Salt Bridges: A Comparison of Current Biomolecular Force Fields

Recent advances in computer hardware and software have made rigorous evaluation of current biomolecular force fields using microsecond-scale simulations possible. Force fields differ in their treatment of electrostatic interactions, including the formation of salt bridges in proteins. Here we conducted an extensive evaluation of salt bridge interactions in the latest AMBER, CHARMM, and OPLS for...

متن کامل

Communication: Microsecond peptide dynamics from nanosecond trajectories: a Langevin approach.

Based on a given time series, the data-driven Langevin equation (dLE) estimates the drift and the diffusion field of the dynamics, which are then employed to reproduce the essential statistical and dynamical features of the original time series. Because the propagation of the dLE requires only local information, the input data are neither required to be Boltzmann weighted nor to be a continuous...

متن کامل

Interpretation of NMR relaxation properties of Pin1, a two-domain protein, based on Brownian dynamic simulations.

Many important proteins contain multiple domains connected by flexible linkers. Inter-domain motion is suggested to play a key role in many processes involving molecular recognition. Heteronuclear NMR relaxation is sensitive to motions in the relevant time scales and could provide valuable information on the dynamics of multi-domain proteins. However, the standard analysis based on the separati...

متن کامل

Microsecond kinetics in model single- and double-stranded amylose polymers† †Electronic supplementary information (ESI) available: Detailed structural definitions, methodological descriptions, analyses of the simulations and computed and experimental molecular properties are provided. See DOI: 10.1039/c4cp00570h Click here for additional data file.

Amylose, a component of starch with increasing biotechnological significance, is a linear glucose polysaccharide that self-organizes into single- and double-helical assemblies. Starch granule packing, gelation and inclusion-complex formation result from finely balanced macromolecular kinetics that have eluded precise experimental quantification. Here, graphics processing unit (GPU) accelerated ...

متن کامل

Microsecond time-scale dynamics from relaxation in the rotating frame: experiments using spin lock with alternating phase.

A spin lock comprised of radiofrequency pulses with alternating phase, (x) (-x)(x) (-x) , is proposed as a new technique to probe microsecond time-scale dynamics. A series of R1rho measurements using different pulse duration tp allows one to determine exchange rate, kex, the product p(a)p(b)(Delta omega(ab))2 involving populations of the exchanging species, p(a) and p(b), together with chemical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 5 6  شماره 

صفحات  -

تاریخ انتشار 2009