Spherical lesion phantoms for testing the performance of elastography systems.
نویسندگان
چکیده
A set of three cubic one-litre phantoms containing spherical simulated lesions was produced for use in comparing lesion detection performance of different elastography systems. The materials employed are known to be stable in heterogeneous configurations regarding geometry and elastic contrast identical with (storage modulus of lesion material) / (storage modulus of background material), and regarding ultrasound and NMR properties. The materials mimic soft tissues in terms of elastic, ultrasound and NMR properties. Each phantom has only one value of elastic contrast (3.3, 4.6 or 5.5) and contains arrays of 1.6 mm, 2 mm, 3 mm and 4 mm diameter spherical simulated lesions. All the spheres of a given diameter are arranged in a regular array with coplanar centres. Elastograms of an array made with ultrasound allow determination of the depth range over which lesions of that diameter and elastic contrast can be detected. Two phantoms are made from agar-plus-gelatin-based materials, and one is made from oil-in-gelatin dispersions. The methods for producing the phantoms are described in detail. Lesion detection performances for two ultrasound systems, both operating at about 7.5 MHz and focused at about 5 cm, were quantified with distinctions between the two systems demonstrated. Neither system was capable of detecting any of the 1.6 mm lesions. Phantoms such as these should be useful in research labs that are refining hardware and/or software for elastography.
منابع مشابه
Low-cost quasi-real-time elastography using B-mode ultrasound images.
A low cost, quasi real-time elastography system, displacement-gradient elastography (DGE), was developed by applying digital image correlation (DIC) method and smoothing algorithm to B-mode ultrasound images. In order to achieve quasi real-time elastogram display, a new fast pattern matching algorithm, decoupled cross-correlation (DCC), was proposed and validated. By applying the DGE to various...
متن کاملRepeatability of shear wave elastography in liver fibrosis phantoms—Evaluation of five different systems
This study aimed to assess and validate the repeatability and agreement of quantitative elastography of novel shear wave methods on four individual tissue-mimicking liver fibrosis phantoms with different known Young's modulus. We used GE Logiq E9 2D-SWE, Philips iU22 ARFI (pSWE), Samsung TS80A SWE (pSWE), Hitachi Ascendus (SWM) and Transient Elastography (TE). Two individual investigators perfo...
متن کاملPii: S0301-5629(01)00473-2
Quantification of ultrasound (US) imager performance simulating human observers is addressed using size-dependent lesion signal-to-noise ratio (LSNR) analysis of images of spherical simulated lesions in phantoms. LSNR values obtained over a broad range of image depths can be used with a single detectability threshold to determine the depth range over which lesions of a given size and contrast a...
متن کاملModeling the Skull-Brain Interface Using Sylgard 527 Phantoms
The goal of my research is to create a phantom capable of simulating brain tissue mechanical properties. This phantom will be tested with Magnetic Resonance Elastography (MRE) to retrieve data about the wave-motion taking place in the phantom. During the summer and past few months, I have created a homogenous Sylgard 527 phantom, a simple model, representing only the skull and brain tissue. In ...
متن کاملShear wave elastography plaque characterization with mechanical testing validation: a phantom study.
Determining plaque vulnerability is critical when selecting the most suitable treatment for patients with atherosclerotic plaque. Currently, clinical non-invasive ultrasound-based methods for plaque characterization are limited to visual assessment of plaque morphology and new quantitative methods are needed. In this study, shear wave elastography (SWE) was used to characterize hard and soft pl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 50 24 شماره
صفحات -
تاریخ انتشار 2005