Fuzzy Causal Probabilistic Networks - a New Ideal and Practical Inference Engine
نویسندگان
چکیده
Fuzziness and randomness are two distinct components of uncertainty. While fuzzy sets are a rigorous softening of random sets, many of the operations de ned in fuzzy logic lack a complete formalism, and are not strongly supported by experimental evidence. Causal Probabilistic Networks (CPN) or Bayesian networks provide an ultimately exible inference mechanism based on Bayesian probability principles. However, CPNs su er from the overwhelmingly large conditional probability tables with discrete variables. Fuzzi cation of continuous or crisp variables reduces the size of conditional probability tables to practically acceptable levels and these tables exhaustively encompass all the intuitive and fuzzy rules for inference problems. In this way, we reach a new inference engine, called fuzzy causal probabilistic networks, which provides a rigorous formalism for inference under fuzziness
منابع مشابه
Rule-based joint fuzzy and probabilistic networks
One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملA Practical Inference Engine for Risk Assessment of Power Systems based on Hybrid Fuzzy Influence Diagrams
Risk became the crucial decision making criteria in evaluation of some control actions in power systems, but very often, these decisions are made in a highly uncertain environment. In this paper, a new graphical tool for risk assessment and decision making under uncertainty – hybrid influence diagram with fuzzy probability values and fuzzy random variables is proposed. Influence diagram is a ge...
متن کاملA New Algorithm for the Discrete Shortest Path Problem in a Network Based on Ideal Fuzzy Sets
A shortest path problem is a practical issue in networks for real-world situations. This paper addresses the fuzzy shortest path (FSP) problem to obtain the best fuzzy path among fuzzy paths sets. For this purpose, a new efficient algorithm is introduced based on a new definition of ideal fuzzy sets (IFSs) in order to determine the fuzzy shortest path. Moreover, this algorithm is developed for ...
متن کاملRisk Analysis of Operating Room Using the Fuzzy Bayesian Network Model
To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...
متن کامل