A rare polymorphic variant of NBS1 reduces DNA repair activity and elevates chromosomal instability.

نویسندگان

  • Yuki Yamamoto
  • Mamiko Miyamoto
  • Daisuke Tatsuda
  • Michiaki Kubo
  • Hitoshi Nakagama
  • Yusuke Nakamura
  • Hitoshi Satoh
  • Koichi Matsuda
  • Toshiki Watanabe
  • Tsutomu Ohta
چکیده

Failure to expeditiously repair DNA at sites of double-strand breaks (DSB) ultimately is an important etiologic factor in cancer development. NBS1 plays an important role in the cellular response to DSB damage. A rare polymorphic variant of NBS1 that resulted in an isoleucine to valine substitution at amino acid position 171 (I171V) was first identified in childhood acute lymphoblastic leukemia. This polymorphic variant is located in the N-terminal region that interacts with other DNA repair factors. In earlier work, we had identified a remarkable number of structural chromosomal aberrations in a patient with pediatric aplastic anemia with a homozygous polymorphic variant of NBS1-I171V; however, it was unclear whether this variant affected DSB repair activity or chromosomal instability. In this report, we demonstrate that NBS1-I171V reduces DSB repair activity through a loss of association with the DNA repair factor MDC1. Furthermore, we found that heterozygosity in this polymorphic variant was associated with breast cancer risk. Finally, we showed that this variant exerted a dominant-negative effect on wild-type NBS1, attenuating DSB repair efficiency and elevating chromosomal instability. Our findings offer evidence that the failure of DNA repair leading to chromosomal instability has a causal impact on the risk of breast cancer development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular and Cellular Pathobiology A Rare Polymorphic Variant of NBS1 Reduces DNA Repair Activity and Elevates Chromosomal Instability

Failure to expeditiously repair DNA at sites of double-strand breaks (DSB) ultimately is an important etiologic factor in cancer development. NBS1 plays an important role in the cellular response to DSB damage. A rare polymorphic variant of NBS1 that resulted in an isoleucine to valine substitution at amino acid position 171 (I171V) was first identified in childhood acute lymphoblastic leukemia...

متن کامل

Association of DNA-PK activity and radiation-induced NBS1 foci formation in lymphocytes with clinical malignancy in breast cancer patients.

DNA double-strand break (DSB) is one of the most deleterious lesions induced by DNA damaging agents. DSB repair pathway is implicated in maintaining genomic integrity via suppression of genetic instability and neoplastic transformation. DNA-dependent protein kinase (DNA-PK) has a pivotal role in DNA DSB repair. The Nijmegen breakage syndrome protein (NBS1), essential for DSB repair, re-localize...

متن کامل

The fission yeast Rad32 (Mre11)-Rad50-Nbs1 complex is required for the S-phase DNA damage checkpoint.

Mre11, Rad50, and Nbs1 form a conserved heterotrimeric complex that is involved in recombination and DNA damage checkpoints. Mutations in this complex disrupt the S-phase DNA damage checkpoint, the checkpoint which slows replication in response to DNA damage, and cause chromosome instability and cancer in humans. However, how these proteins function and specifically where they act in the checkp...

متن کامل

NBS1 is regulated by two kind of mechanisms: ATM-dependent complex formation with MRE11 and RAD50, and cell cycle–dependent degradation of protein

Nijmegen breakage syndrome (NBS), a condition similar to Ataxia-Telangiectasia (A-T), is a radiation-hypersensitive genetic disorder showing chromosomal instability, radio-resistant DNA synthesis, immunodeficiency, and predisposition to malignances. The product of the responsible gene, NBS1, forms a complex with MRE11 and RAD50 (MRN complex). The MRN complex is necessary for the DNA damage-indu...

متن کامل

Modulation of trinucleotide repeat instability by DNA polymerase β polymorphic variant R137Q

Trinucleotide repeat (TNR) instability is associated with human neurodegenerative diseases and cancer. Recent studies have pointed out that DNA base excision repair (BER) mediated by DNA polymerase β (pol β) plays a crucial role in governing somatic TNR instability in a damage-location dependent manner. It has been shown that the activities and function of BER enzymes and cofactors can be modul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 74 14  شماره 

صفحات  -

تاریخ انتشار 2014