Discovery of FabH/FabF inhibitors from natural products.

نویسندگان

  • Katherine Young
  • Hiranthi Jayasuriya
  • John G Ondeyka
  • Kithsiri Herath
  • Chaowei Zhang
  • Srinivas Kodali
  • Andrew Galgoci
  • Ronald Painter
  • Vickie Brown-Driver
  • Robert Yamamoto
  • Lynn L Silver
  • Yingcong Zheng
  • Judith I Ventura
  • Janet Sigmund
  • Sookhee Ha
  • Angela Basilio
  • Francisca Vicente
  • José Rubén Tormo
  • Fernando Pelaez
  • Phil Youngman
  • Doris Cully
  • John F Barrett
  • Dennis Schmatz
  • Sheo B Singh
  • Jun Wang
چکیده

Condensing enzymes are essential in type II fatty acid synthesis and are promising targets for antibacterial drug discovery. Recently, a new approach using a xylose-inducible plasmid to express antisense RNA in Staphylococcus aureus has been described; however, the actual mechanism was not delineated. In this paper, the mechanism of decreased target protein production by expression of antisense RNA was investigated using Northern blotting. This revealed that the antisense RNA acts posttranscriptionally by targeting mRNA, leading to 5' mRNA degradation. Using this technology, a two-plate assay was developed in order to identify FabF/FabH target-specific cell-permeable inhibitors by screening of natural product extracts. Over 250,000 natural product fermentation broths were screened and then confirmed in biochemical assays, yielding a hit rate of 0.1%. All known natural product FabH and FabF inhibitors, including cerulenin, thiolactomycin, thiotetromycin, and Tü3010, were discovered using this whole-cell mechanism-based screening approach. Phomallenic acids, which are new inhibitors of FabF, were also discovered. These new inhibitors exhibited target selectivity in the gel elongation assay and in the whole-cell-based two-plate assay. Phomallenic acid C showed good antibacterial activity, about 20-fold better than that of thiolactomycin and cerulenin, against S. aureus. It exhibited a spectrum of antibacterial activity against clinically important pathogens including methicillin-resistant Staphylococcus aureus, Bacillus subtilis, and Haemophilus influenzae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FabH mutations confer resistance to FabF-directed antibiotics in Staphylococcus aureus.

Delineating the mechanisms for genetically acquired antibiotic resistance is a robust approach to target validation and anticipates the evolution of clinical drug resistance. This study defines a spectrum of mutations in fabH that render Staphylococcus aureus resistant to multiple natural products known to inhibit the elongation condensing enzyme (FabF) of bacterial type II fatty acid synthesis...

متن کامل

Structural Characterisation of the Beta-Ketoacyl-Acyl Carrier Protein Synthases, FabF and FabH, of Yersinia pestis

Yersinia pestis, the causative agent of bubonic, pneumonic, and septicaemic plague, remains a major public health threat, with outbreaks of disease occurring in China, Madagascar, and Peru in the last five years. The existence of multidrug resistant Y. pestis and the potential of this bacterium as a bioterrorism agent illustrates the need for new antimicrobials. The β-ketoacyl-acyl carrier prot...

متن کامل

1,2-dithiole-3-ones as potent inhibitors of the bacterial 3-ketoacyl acyl carrier protein synthase III (FabH).

The enzyme FabH catalyzes the initial step of fatty acid biosynthesis via a type II dissociated fatty acid synthase. The pivotal role of this essential enzyme, combined with its unique structural features and ubiquitous occurrence in bacteria, has made it an attractive new target for the development of antibacterial and antiparasitic compounds. We have searched the National Cancer Institute dat...

متن کامل

Beta-ketoacyl acyl carrier protein synthase III (FabH) is essential for fatty acid biosynthesis in Streptomyces coelicolor A3(2).

The Streptomyces coelicolor fab (fatty acid biosynthesis) gene cluster (fabD-fabH-acpP-fabF) is cotranscribed to produce a leaderless mRNA transcript. One of these genes, fabH, encodes a ketoacyl synthase III that is essential to and is proposed to be responsible for initiation of fatty acid biosynthesis in S. coelicolor.

متن کامل

Identification of a New Binding Site in E. coli FabH using Molecular Dynamics Simulations: Validation by Computational Alanine Mutagenesis and Docking Studies

FabH (Fatty acid biosynthesis, enzyme H, also referred to as β-ketoacyl-ACP-synthase III) is a key condensing enzyme in the type II fatty acid synthesis (FAS) system. The FAS pathway in bacteria is essential for growth and survival and vastly differs from the human FAS pathway. Enzymes involved in this pathway have arisen as promising biomolecular targets for discovery of new antibacterial drug...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 50 2  شماره 

صفحات  -

تاریخ انتشار 2006