Ordinals, Computations, and Models of Set Theory

نویسنده

  • PETER KOEPKE
چکیده

Ordinary computations can be characterised by register machines working with natural numbers. We study ordinal register machines where the registers can hold arbitrary ordinal numbers. The class of sets of ordinals which are computable by such machines has strong closure properties and satisfies the set theoretic axiom system SO. This implies that ordinal computability is equivalent to Gödel’s model L of constructible sets. In this tutorial we shall give a proof of this theorem, starting with brief reviews of ordinal theory and standard register machines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing a Model of Set Theory

We define the notion of ordinal computability by generalizing standard Turing computability on tapes of length ω to computations on tapes of arbitrary ordinal length. The generalized Turing machine is able to compute a recursive bounded truth predicate on the ordinals. The class of sets of ordinals which can be read off the truth predicate satisfies a natural theory SO. SO is the theory of the ...

متن کامل

Register computations on ordinals

We generalize ordinary register machines on natural numbers to machines whose registers contain arbitrary ordinals. Ordinal register machines are able to compute a recursive bounded truth predicate on the ordinals. The class of sets of ordinals which can be read off the truth predicate satisfies a natural theory SO. SO is the theory of the sets of ordinals in a model of the Zermelo-Fraenkel axi...

متن کامل

Ordinal computations

The notion of ordinal computability is defined by generalising standard Turing computability on tapes of length ω to computations on tapes of arbitrary ordinal length. The fundamental theorem on ordinal computability states that a set x of ordinals is ordinal computable from ordinal parameters if and only if x is an element of the constructible universe L. In this paper we present a new proof o...

متن کامل

Turing computations on ordinals

We define the notion of ordinal computability by generalizing standard Turing computability on tapes of length ω to computations on tapes of arbitrary ordinal length. We show that a set of ordinals is ordinal computable from a finite set of ordinal parameters if and only if it is an element of Gödel’s constructible universe L. This characterization can be used to prove the generalized continuum...

متن کامل

The Theory of Sets of Ordinals

We propose a natural theory SO axiomatizing the class of sets of ordinals in a model of ZFC set theory. Both theories possess equal logical strength. Constructibility theory in SO corresponds to a natural recursion theory on ordinals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006