Aic and Bic Formodelingwith Complex Survey Data
نویسندگان
چکیده
Model-selection criteria such as AIC and BIC are widely used in applied statistics. In recent years, there has been a huge increase in modeling data from large complex surveys, and a resulting demand for versions of AIC and BIC that are valid under complex sampling. In this paper, we show how both criteria can be modified to handle complex samples. We illustrate with two examples, the first using data from NHANES and the second using data from a case–control study.
منابع مشابه
Towards data driven selection of a penalty function for data driven Neyman tests
The data driven Neyman statistic consists of two elements: a score statistic in a finite dimensional submodel and a selection rule to determine the best fitted submodel. For instance, Schwarz BIC and Akaike AIC rules are often applied in such constructions. For moderate sample sizes AIC is sensitive in detecting complex models, while BIC works well for relatively simple structures. When the sam...
متن کاملProbability Distribution Fitting to Maternal Mortality in Nigeria.
The consequences of Maternal Mortality (MM) cannot be overemphasized. It inhibits population growth resulting into loss of lives among others. This work tends to obtain the maternal mortality rates (MMR) in Nigeria, identify some fitted distributions to MMR and determine which of the distributions best fits the data. A comprehensive Exploratory Data Analysis (EDA) was carried on MM and the MMRs...
متن کاملCatching Up Faster by Switching Sooner: A predictive approach to adaptive estimation with an application to the AIC-BIC Dilemma
Prediction and estimation based on Bayesian model selection and model averaging, and derived methods such as BIC, do not always converge at the fastest possible rate. We identify the catch-up phenomenon as a novel explanation for the slow convergence of Bayesian methods, and use it to define a modification of the Bayesian predictive distribution, called the switch distribution. When used as an ...
متن کاملBayesian information criterion for longitudinal and clustered data.
When a number of models are fit to the same data set, one method of choosing the 'best' model is to select the model for which Akaike's information criterion (AIC) is lowest. AIC applies when maximum likelihood is used to estimate the unknown parameters in the model. The value of -2 log likelihood for each model fit is penalized by adding twice the number of estimated parameters. The number of ...
متن کاملA Free-Knot Spline Modeling Framework for Piecewise Linear Logistic Regression in Complex Samples with Body Mass Index and Mortality as an Example
This paper details the design, evaluation, and implementation of a framework for detecting and modeling nonlinearity between a binary outcome and a continuous predictor variable adjusted for covariates in complex samples. The framework provides familiar-looking parameterizations of output in terms of linear slope coefficients and odds ratios. Estimation methods focus on maximum likelihood optim...
متن کامل