Opponent-process additivity--I: red-green equilibria.

نویسنده

  • J Larimer
چکیده

A red/green equilibrium light is one which appears neither reddish nor greenish (i.e. either uniquely yellow, uniquely blue, or achromatic). A subset of spectral and nonspectral red/green equilibria was determined for several luminance levels, in order to test whether the set of all such equilibria is closed under linear color-mixture operations. The spectral loci ofequilibrium yellow and blue showedeither no variation or visually insignificant variation over a range of l-2 log,, unit. There were no trends that were repeatable across observers. We concluded that spectral red/green equilibria are closed under scalar multiplication; consequently they are invariant hues relative to the Bezold-Briicke shift. The additive mixture of yellow and blue equilibrium wavelengths, in any luminance ratio, is also an equilibrium light. Small changes of the yellowish component of a mixture toward redness or greeness must be compensated by predictable changes of the bluish component of the mixture toward greenness or redness. We concluded that yellow and blue equilibria are complementary relative to an equilibrium white; that desaturation of a yellow or blue equilibrium light with such a white produces no Abney hue shift; and that the set of red/green equilibria is closed under general linear operations. One consequence is that the red/green chromatic-response function, measured by the Jameson-Hurvich technique of cancellation to equilibrium, is a linear function of the individual’s color-matching coordinates. A second consequence of linear closure of equilibria is a strong constraint on the class of combination rules by which receptor outputs are recoded into the red/green opponent process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Opponent process additivity. II. Yellow/blue equilibria and nonlinear models.

A yellow/blue equilibrium Iight is one which appears neither yellowish nor bluish (i.e. uniquely red, uniquely green, or achromatic). The spectral locus of the monochromatic greenish equilibrium (around 500 nm) shows little, if any, variation over a luminance range of .! log,, units. Reddish equilibria are extraspectral. involving mixtures of short-and long-wave light. Their wavelength composit...

متن کامل

Mechanisms underlying the detection of increments in parafoveal retina

It is well established that the spectral sensitivity under photopic conditions varies across the human retina. We investigate the mechanisms underlying these spectral changes. Through the use of color appearance, flicker sensitivity, additivity, discrimination at threshold and modeling, we show that the changes in spectral sensitivity on a photopic white background across parafoveal retina are ...

متن کامل

A ratio principle for a red/green and a yellow/blue channel?

There is strong empirical evidence that, under adaptation to another achromatic color stimulus, the lightness of an achromatic color stimulus depends on the ratio of the luminances of the two stimuli. In the present study, the suitability of this ratio principle is tested for two chromatic postreceptoral opponent channels. A Hering red/green channel and a non-Hering yellow/blue channel are spec...

متن کامل

Opponent Color Space Motivated by Retinal Processing

We introduce a new opponent color space, which aims to mimic the color processing in the primate retina. Recent data from physiology and morphology are used to determine the model and its parameters. The input signal in LMS representation is first nonlinearly transformed by a response saturation stage. Then a linear, spatially extended transformation computes the opponent representation. In con...

متن کامل

Unique Hues

One can see so many different colors in the environment. And yet there are only four colors that occupy a special place in color perception. They are called unique hues and they originate from the opponent colors theory proposed by Ewald Hering in 1878 [1, 2]. The theory postulates three opponent processes: two chromatic processes of red-green and blue-yellow and one achromatic process of white...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Vision research

دوره 14 11  شماره 

صفحات  -

تاریخ انتشار 1974