Shape anisotropy: tensor distance to anisotropy measure

نویسندگان

  • Yonas T. Weldeselassie
  • Saba El-Hilo
  • M. Stella Atkins
چکیده

Fractional anisotropy (FA), defined as the distance of a diffusion tensor from its closest isotropic tensor, has been extensively studied as quantitative anisotropy measure for diffusion tensor magnetic resonance images (DT-MRI). It has been used to reveal the white matter profile of brain images, as guiding feature for seeding and stopping in fiber tractography and for the diagnosis and assessment of degenerative brain diseases. Despite its extensive use in DT-MRI community, however, not much attention has been given to the mathematical correctness of its derivation from diffusion tensors which is achieved using Euclidean dot product in 9D space. But, recent progress in DT-MRI have shown that the space of diffusion tensors does not form a Euclidean vector space and thus Euclidean dot product is not appropriate for tensors. In this paper, we propose a novel and robust rotationally invariant diffusion anisotropy measure derived using the recently proposed Log-Euclidean and Jdivergence tensor distance measures. An interesting finding of our work is that given a diffusion tensor, its closest isotropic tensor is different for different tensor distance used. We demonstrate qualitatively that our new anisotropy measure reveals superior white matter profile of DT-MR brain images and analytically show that it has a higher signal to noise ratio than FA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Decomposition of Tensor Distance into Shape and Orientation Distances

A novel geometric framework for decomposition of tensor distance into shape and orientation distances is proposed. We show that such shape distance leads to the development of a novel and robust anisotropy measure that reveals strikingly superior white matter profile of DT-MR brain images than fractional anisotropy (FA) and analytically show that it has a higher signal to noise ratio than FA. U...

متن کامل

Evaluation of Diffusion Anisotropy and Diffusion Shape in Grading of Glial Tumors

Background: The most common primary tumors of brain are gliomas. Grading of tumor is vital for designing proper treatment plans. The gold standard choice to determine the grade of glial tumor is biopsy which is an invasive method.Objective: In this study, we try to investigate the role of fractional anisotropy (diffusion anisotropy) and linear anisotropy ...

متن کامل

Evaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation

Introduction: There is many ways to assessing the electrical conductivity anisotropyof a tumor. Applying the values of tissue electrical conductivity anisotropyis crucial in numerical modeling of the electric and thermal field distribution in electroporationtreatments. This study aims to calculate the tissues electrical conductivityanisotropy in patients with sarcoma tumors using diffusion tens...

متن کامل

A geometric analysis of diffusion tensor measurements of the human brain.

The degree of diffusion tensor anisotropy is often associated with the organization of structural tissues such as white matter. Numerous measures of diffusion anisotropy have been proposed, which could lead to confusion in interpreting and comparing results from different studies. In this study, a new method for representing the diffusion tensor shape, called the three-phase (3P) plot, is descr...

متن کامل

Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging

The statistical analysis of covariance matrix data is considered, and in particular methodology is discussed which takes into account the non-Euclidean nature of the space of positive semi-definite symmetric matrices. The main motivation for the work is the analysis of diffusion tensors in medical image analysis. The primary focus is on estimation of a mean covariance matrix, and in particular ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011