Global effects of agriculture on fluvial dissolved organic matter

نویسندگان

  • Daniel Graeber
  • Iola G. Boëchat
  • Francisco Encina-Montoya
  • Carlos Esse
  • Jörg Gelbrecht
  • Guillermo Goyenola
  • Björn Gücker
  • Marlen Heinz
  • Brian Kronvang
  • Mariana Meerhoff
  • Jorge Nimptsch
  • Martin T. Pusch
  • Ricky C. S. Silva
  • Daniel von Schiller
  • Elke Zwirnmann
چکیده

Agricultural land covers approximately 40% of Earth's land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interacting effects of climate and agriculture on fluvial DOM in temperate and subtropical catchments

Dissolved organic matter (DOM) is an important factor in aquatic ecosystems, which is involved in a large variety of biogeochemical and ecological processes, and recent literature suggests that it could be strongly affected by agriculture in different climates. Based on novel monitoring techniques, we investigated the interaction of climate and agriculture effects on DOM quantity and quality. T...

متن کامل

Pathways of Atmospheric CO2 through Fluvial Systems

As the main pathway for the ultimate preservation of terrigenous production in modern environments, the transfer of organic matter from the land to the oceans via fluvial systems is a key link in the global carbon cycle (Ittekot and Haake 1990; Degens et al. 1991; Hedges et al 1992). Hence, the “role” of rivers in the global carbon cycle is most typically expressed as the fluvial export of tota...

متن کامل

Effects of human land use on the terrestrial and aquatic sources of fluvial organic matter in a temperate river basin (The Meuse River, Belgium)

The impact of human activities on the concentrations and composition of dissolved organic matter (DOM) and particulate organic matter (POM) was investigated in the Walloon Region of the Meuse River basin (Belgium). Water samples were collected at different hydrological periods along a gradient of human disturbance (50 sampling sites ranging from 8.0 to 20,407 km) and during a 1.5 year monitorin...

متن کامل

Isotope-based Fluvial Organic Carbon (ISOFLOC) Model: Model formulation, sensitivity, and evaluation

Watershed-scale carbon budgets remain poorly understood, in part due to inadequate simulation tools to assess in-stream carbon fate and transport. A new numerical model termed ISOtope-based FLuvial Organic Carbon (ISOFLOC) is formulated to simulate the fluvial organic carbon budget in watersheds where hydrologic, sediment transport, and biogeochemical processes are coupled to control benthic an...

متن کامل

Evidence for key enzymatic controls on metabolism of Arctic river organic matter.

Permafrost thaw in the Arctic driven by climate change is mobilizing ancient terrigenous organic carbon (OC) into fluvial networks. Understanding the controls on metabolism of this OC is imperative for assessing its role with respect to climate feedbacks. In this study, we examined the effect of inorganic nutrient supply and dissolved organic matter (DOM) composition on aquatic extracellular en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015