The ext re mal graph with the largest Merrifield - Simmons index of ( n , n + 2 ) - graphs

نویسنده

  • E. Mohseni
چکیده

The Merrifield-Simmons index of a graph G is defined as the total number of its independent sets. A (n, n + 2)-graph is a connected simple graph with n vertices and n + 2 edges. In this paper we characterize the (n, n+2)-graph with the largest MerrifieldSimmons index. We show that its Merrifield-Simmons index i.e. the upper bound of the Merrifield-Simmons index of the (n, n+2)-graphs is 9× 2n−5 + 1 for n ≥ 5. Keywords—Merrifield-Simmons index, (n,n+2)-graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Merrifield-Simmons indices and Hosoya indices of some classes of cartesian graph product

The Merrifield-Simmons index of a graph is defined as the total number of the independent sets of the graph and the Hosoya index of a graph is defined as the total number of the matchings of the graph. In this paper, we give formula for Merrifield-Simmons and Hosoya indices of some classes of cartesian product of two graphs K{_2}×H, where H is a path graph P{_n}, cyclic graph C{_n}, or star gra...

متن کامل

Some extremal unicyclic graphs with respect to Hosoya index and Merrifield-Simmons index

The Hosoya index of a graph is defined as the total number of the matchings, including the empty edge set, of the graph. The Merrifield-Simmons index of a graph is defined as the total number of the independent vertex sets, including the empty vertex set, of the graph. Let U(n,∆) be the set of connected unicyclic graphs of order n with maximum degree ∆. We consider the Hosoya indices and the Me...

متن کامل

Tricyclic graphs with maximum Merrifield-Simmons index

It is well known that the graph invariant, ‘the Merrifield–Simmons index’ is important one in structural chemistry. The connected acyclic graphs with maximal and minimal Merrifield–Simmons indices are determined by Prodinger and Tichy [H. Prodinger, R.F. Tichy, Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982) 16–21]. The sharp upper and lower bounds for theMerrifield–Simmons indices of u...

متن کامل

On the Merrifield-Simmons index and Hosoya index of bicyclic graphs with a given girth

For a graph G, the Merrifield-Simmons index i(G) and the Hosoya index z(G) are defined as the total number of independent sets and the total number of matchings of the graph G, respectively. In this paper, we characterize the graphs with the maximal Merrifield-Simmons index and the minimal Hosoya index, respectively, among the bicyclic graphs on n vertices with a given girth g.

متن کامل

On Merrifield-Simmons index of unicyclic graphs with given girth and prescribed pendent vertices

For a graph G, the Merrifield-Simmons index i(G) is defined as the total number of independent sets of the graph G. Let G(n, l, k) be the class of unicyclic graphs on n vertices with girth and pendent vertices being resp. l and k. In this paper, we characterize the unique unicyclic graph possessing prescribed girth and pendent vertices with the maximal Merrifield-Simmons index among all graphs ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010