Semi-planar Steiner quasigroups of cardinality 3n

نویسنده

  • M. H. Armanious
چکیده

It is well known that for each n ≡ 1 or 3 (mod 6) there is a planar Steiner quasigroup (briefly, squag) of cardinality n (Doyen (1969) and Quackenbush (1976)). A simple squag is semi-planar if every triangle either generates the whole squag or the 9-element subsquag (Quackenbush (1976)). In fact, Quakenbush has stated that there should be such semi-planar squags. In this paper, we construct a semi-planar squag of cardinality 3n for all n > 9 and n ≡ 1 or 3 (mod 6). For n = 9, we give a construction for a semi-planar squag of cardinality 27 which is not planar. Steiner triple systems are in 1–1 correspondence with the squags (see Quackenbush (1976)). In this article, the Steiner triple system associated with a semi-planar squag will be called semi-planar. Consequently, we may say that there is a semi-planar Steiner triple system of cardinality m which is not planar for all m > 9 and m ≡ 3 or 9 (mod 18). Quackenbush has also proved that the variety generated by a finite simple planar squag covers the variety of all medial squags. Similarly, it is easy to show that the variety generated by a finite semi-planar squag also covers the variety of all medial squags.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Steiner Quasigroups of Cardinality

In [12] Quackenbush has expected that there should be subdirectly irreducible Steiner quasigroups (squags), whose proper homomorphic images are entropic (medial). The smallest interesting cardinality for such squags is 21. Using the tripling construction given in [1] we construct all possible nonsimple subdirectly irreducible squags of cardinality 21 (SQ(21)s). Consequently, we may say that the...

متن کامل

On Steiner Loops of cardinality 20

It is well known that there are five classes of sloops of cardinality 16 " SL(16)s" according to the number of sub-SL(8)s [4, 6]. In this article, we will show that there are exactly 8 classes of nonsimple sloops and 6 classes of simple sloops of cardinality 20 "SL(20)s". Based on the cardinality and the number of (normal) subsloops of SL(20), we will construct in section 3 all possible classes...

متن کامل

On Subdirectly Irreducible Steiner Loops of Cardinality 2n

Let L1 be a finite simple sloop of cardinality n or the 8-element sloop. In this paper, we construct a subdirectly irreducible (monolithic) sloop L = 2⊗αL1 of cardinality 2n, for each n ≥ 8, with n ≡ 2 or 4 (mod 6), in which each proper homomorphic image is a Boolean sloop. Quackenbush [12] has proved that the variety V (L1) generated by a finite simple planar sloop L1 covers the smallest nontr...

متن کامل

Steiner Reducing Sets of Minimum Weight Triangulations

This paper develops techniques for computing the minimum weight Steiner triangulation of a planar point set. We call a Steiner point P a Steiner reducing point of a planar point set X if the weight (sum of edge lengths) of a minimum weight triangulation of X ∪{P} is less than that of X. We define the Steiner reducing set St(X) to be the collection of all Steiner reducing points of X. We provide...

متن کامل

Construction of Quasigroups Using the Singular Direct Product

The idea of a discrete w(x, y) =v(x, y) quasigroup is given along with a generalization of A. Sade's singular direct product. These notions are then used to construct certain types of quasigroups. In particular an algebraic generalization of E. H. Moore's construction of Steiner triple systems is obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2003