Real-time Visual Tracking Using Sparse Representation
نویسندگان
چکیده
The `1 tracker obtains robustness by seeking a sparse representation of the tracking object via `1 norm minimization [1]. However, the high computational complexity involved in the `1 tracker restricts its further applications in real time processing scenario. Hence we propose a Real Time Compressed Sensing Tracking (RTCST) by exploiting the signal recovery power of Compressed Sensing (CS). Dimensionality reduction and a customized Orthogonal Matching Pursuit (OMP) algorithm are adopted to accelerate the CS tracking. As a result, our algorithm achieves a real-time speed that is up to 6, 000 times faster than that of the `1 tracker. Meanwhile, RTCST still produces competitive (sometimes even superior) tracking accuracy comparing to the existing `1 tracker. Furthermore, for a stationary camera, a further refined tracker is designed by integrating a CS-based background model (CSBM). This CSBMequipped tracker coined as RTCST-B, outperforms most stateof-the-arts with respect to both accuracy and robustness. Finally, our experimental results on various video sequences, which are verified by a new metric—Tracking Success Probability (TSP), show the excellence of the proposed algorithms.
منابع مشابه
Real-Time Robust Tracking with Sparse Representation
Real-Time Robust Tracking with Sparse Representation Visual object tracking plays a critical role in many computer vision applications including visual surveillance, transportation monitoring system etc. A main goal of visual object tracking is to estimate the location of specified object in consecutive frames. For these applications, we need a real time tracker that is robust to various challe...
متن کاملReal-Time Lip Tracking for Audio-Visual Speech Recognition Applications
Developments in dynamic contour tracking permit sparse representation of the outlines of moving contours. Given the increasing computing power of general-purpose workstations it is now possible to track human faces and parts of faces in real-time without special hardware. This paper describes a real-time lip tracker that uses a Kalman lter based dynamic contour to track the outline of the lips....
متن کاملScale Saliency: Applications in Visual Matching, Tracking and View-Based Object Recognition
In this paper, we introduce a novel technique for image matching and feature-based tracking. The technique is based on the idea of using the Scale-Saliency algorithm to pick a sparse number of ‘interesting’ or ‘salient’ features. Feature vectors for each of the salient regions are generated and used in the matching process. Due to the nature of the sparse representation of feature vectors gener...
متن کاملModeling the potential of Sand and Dust Storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)
Due to the differences between the visible and thermal infrared images, the combination of these two types of images leads to better understanding of the characteristics of targets and the environment. Thermal infrared images are really in distinguishing targets from the background based on the radiation differences and land surface temperature (LST) calculation. However, their spatial resolu...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1012.2603 شماره
صفحات -
تاریخ انتشار 2010