Realisation of special Kähler manifolds as parabolic spheres
نویسنده
چکیده
We prove that any simply connected special Kähler manifold admits a canonical immersion as a parabolic affine hypersphere. As an application, we associate a parabolic affine hypersphere to any nondegenerate holomorphic function. Also we show that a classical result of Calabi and Pogorelov on parabolic spheres implies Lu’s theorem on complete special Kähler manifolds with a positive definite metric.
منابع مشابه
Polyhedral Kähler Manifolds
In this article we introduce the notion of Polyhedral Kähler manifolds, even dimensional polyhedral manifolds with unitary holonomy. We concentrate on the 4-dimensional case, prove that such manifolds are smooth complex surfaces, and classify the singularities of the metric. The singularities form a divisor and the residues of the flat connection on the complement of the divisor give us a syste...
متن کاملH-minimal Lagrangian fibrations in Kähler manifolds and minimal Lagrangian vanishing tori in Kähler-Einstein manifolds
H-minimal Lagrangian submanifolds in general Kähler manifolds generalize special Lagrangian submanifolds in Calabi-Yau manifolds. In this paper we will use the deformation theory of H-minimal Lagrangian submanifolds in Kähler manifolds to construct minimal Lagrangian torus in certain Kähler-Einstein manifolds with negative first Chern class.
متن کاملA note on special Kähler manifolds
The base space of an algebraically completely integrable Hamiltonian system acquires a rather special differential-geometric structure which plays an important role in modern physical theories such as Seiberg-Witten theory. This structure was formalised by D. Freed [1] as a Special Kähler manifold. In that paper he conjectured that there are no compact special Kähler manifolds other than flat o...
متن کاملDIFFERENTIABILITY OF PARABOLIC SEMI-FLOWS IN Lp-SPACES AND INERTIAL MANIFOLDS
We consider the semi-flow defined by semi-linear parabolic equations in Lp-spaces and study the differentiable dependence on the initial data. Together with a spectral gap condition this implies existence of inertial manifolds in arbitrary space dimensions. The spectral gap condition is satisfied by the Laplace-Beltrami operator for a class of manifolds. The simplest examples are products of sp...
متن کاملHarmonic Lagrangian submanifolds and fibrations in Kähler manifolds
In this paper we introduce harmonic Lagrangian submanifolds in general Kähler manifolds, which generalize special Lagrangian submanifolds in Calabi-Yau manifolds. We will use the deformation theory of harmonic Lagrangian submanifolds in Kähler manifolds to construct minimal Lagrangian torus in certain Kähler-Einstein manifolds with negative first Chern class.
متن کامل