Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum.

نویسندگان

  • Satoshi Hattori
  • Alexander S Galushko
  • Yoichi Kamagata
  • Bernhard Schink
چکیده

Thermacetogenium phaeum is a homoacetogenic bacterium that can grow on various substrates, such as pyruvate, methanol, or H2/CO2. It can also grow on acetate if cocultured with the hydrogen-consuming methanogenic partner Methanothermobacter thermautotrophicus. Enzyme activities of the CO dehydrogenase/acetyl coenzyme A (CoA) pathway (CO dehydrogenase, formate dehydrogenase, formyl tetrahydrofolate synthase, methylene tetrahydrofolate dehydrogenase) were detected in cell extracts of pure cultures and of syntrophic cocultures. Mixed cell suspensions of T. phaeum and M. thermautotrophicus oxidized acetate rapidly and produced acetate after addition of H2/CO2 after a short time lag. CO dehydrogenase activity staining after native polyacrylamide gel electrophoresis exhibited three oxygen-labile bands which were identical in pure culture and coculture. Protein profiles of T. phaeum cells after sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the strain exhibited basically the same protein patterns in both pure and syntrophic culture. These results indicate that T. phaeum operates the CO dehydrogenase/acetyl-CoA pathway reversibly both in acetate oxidation and in reductive acetogenesis by using the same biochemical apparatus, although it has to couple this pathway to ATP synthesis in different ways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy conservation in syntrophic acetate oxidation

Background: Thermacetogenium phaeum is a thermophilic strictly anaerobic bacterium oxidizing acetate to CO2 in syntrophic association with a methanogenic partner. It can also grow in pure culture, e.g., by fermentation of methanol to acetate. The key enzymes of homoacetate fermentation (Wood-Ljungdahl pathway) are used both in acetate oxidation and acetate formation. The obvious reversibility o...

متن کامل

Quantification of syntrophic acetate-oxidizing microbial communities in biogas processes

Changes in communities of syntrophic acetate-oxidizing bacteria (SAOB) and methanogens caused by elevated ammonia levels were quantified in laboratory-scale methanogenic biogas reactors operating at moderate temperature (37°C) using quantitative polymerase chain reaction (qPCR). The experimental reactor was subjected to gradually increasing ammonia levels (0.8-6.9 g NH4 (+) -N l(-1) ), whereas ...

متن کامل

High Concentrations of Methyl Fluoride Affect the Bacterial Community in a Thermophilic Methanogenic Sludge

To precisely control the application of methyl fluoride (CH3F) for analysis of methanogenic pathways, the influence of 0-10% CH3F on bacterial and archaeal communities in a thermophilic methanogenic sludge was investigated. The results suggested that CH3F acts specifically on acetoclastic methanogenesis. The inhibitory effect stabilized at an initial concentration of 3-5%, with around 90% of th...

متن کامل

The effects of elevated CO2 concentration on competitive interaction between aceticlastic and syntrophic methanogenesis in a model microbial consortium

Investigation of microbial interspecies interactions is essential for elucidating the function and stability of microbial ecosystems. However, community-based analyses including molecular-fingerprinting methods have limitations for precise understanding of interspecies interactions. Construction of model microbial consortia consisting of defined mixed cultures of isolated microorganisms is an e...

متن کامل

Pathway of butyrate catabolism by Desulfobacterium cetonicum.

Desulfobacterium cetonicum 480 oxidized butyrate to 1 mol of acetate and 2 mol of CO2; this reaction was coupled to reduction of sulfate to sulfide. Butyrate was activated by coenzyme A (CoA) transfer from acetyl-CoA, and butyryl-CoA was oxidized to acetyl-CoA by a classical beta-oxidation pathway. Acetyl-CoA was oxidized through the acetyl-CoA/carbon monoxide dehydrogenase pathway. There was a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 187 10  شماره 

صفحات  -

تاریخ انتشار 2005