Silicon luminescence spectra modelling and the impact of dopants

نویسندگان

  • AnYao Liu
  • Hieu T. Nguyen
  • Daniel Macdonald
چکیده

This paper presents findings on applying physical models in the literature to describe silicon luminescence spectra at 80 – 300 K. Incorporation of exciton recombination models are shown to disagree with the measured luminescence spectra, whereas a free electron-hole recombination model is shown to match well with the luminescence spectra. However, the lack of consideration for excitons is not justified, as Bludau et al. [J. Appl. Phys., vol. 45, p. 1846, 1974] reported that excitons are present even at room temperature. The second part of the paper demonstrates the impact of shallow dopants on the silicon luminescence spectra at 79K. The ratio of the dopant-related peak to the band-to-band peak intensities correlates with the dopant concentration, indicating that luminescence spectroscopy has the potential for quantifying dopant concentrations in silicon in this temperature range. © 2016 The Authors. Published by Elsevier Ltd. Peer review by the scientific conference committee of SiliconPV 2016 under responsibility of PSE AG.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physical Modelling of Luminescence Spectra from Crystalline Silicon

We demonstrate that complex luminescence spectra from silicon wafers can be accurately modelled using a simple expression for the individual phonon-related components. By using combinations of various phonon emission and absorption events, it is possible to build up the entire luminescence spectra, which we demonstrate for temperatures between 78 to 300 K. At room temperature, the dominant comp...

متن کامل

Interference effects in the UV(VUV)-excited luminescence spectroscopy of thin dielectric films.

The problem of exciting UV and VUV light interference affecting experimental photoluminescence excitation spectra is analysed for the case of thin transparent films containing arbitrarily distributed emission centres. A numerical technique and supplied software aimed at modelling the phenomenon and correcting the distorted spectra are proposed. Successful restoration results of the experimental...

متن کامل

Multiply doped nanostructured silicate sol-gel thin films: spatial segregation of dopants, energy transfer, and distance measurements.

Physical and chemical strategies that place designed molecules in spatially separated regions of surfactant-templated mesostructured silicate thin films are used to prepare films containing rhodamine 6G (R6G), lanthanide complexes, and both simultaneously. Fluorescence and photoexcitation spectra of R6G in amorphous and structured thin films show that it is located inside the surfactant micelle...

متن کامل

Growth of CsI(Tl) crystals doped with Ca and Tm and investigation of its scintillation characteristics

In this work, the growth of CsI(Tl) crystals as gamma detector was performed using vertical Bridgman method with Ca and Tm co-dopants. For evaluation of the growth crystals, X-Ray Diffraction (XRD), photoluminescence and thermoluminescence spectra as well as recorded gamma spectra were employed. In addition, the scintillation properties including energy resolution, scintillation decay time, abs...

متن کامل

Enhanced Raman and luminescence spectra from co-encapsulated silicon quantum dots and Au-Ag nanoalloys.

We report an approach to enhance simultaneously luminescence and SERS signals with a single excitation wavelength by co-encapsulating silicon quantum dots and Au-Ag alloy nanoparticles encoded with Raman reporter molecules inside polymeric nanoparticles. The SERS-luminescence enhancement exploits the large Stokes shift of silicon quantum dots, which allows 'room' for the display of a Raman spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016