Amyloid-β peptides act as allosteric modulators of cholinergic signalling through formation of soluble BAβACs
نویسندگان
چکیده
Amyloid-β peptides, through highly sophisticated enzymatic machinery, are universally produced and released in an action potential synchronized manner into the interstitial fluids in the brain. Yet no native functions are attributed to amyloid-β. The amyloid-β hypothesis ascribes just neurotoxicity properties through build-up of soluble homomeric amyloid-β oligomers or fibrillar deposits. Apolipoprotein-ε4 (APOE4) allele is the only confirmed genetic risk factor of sporadic Alzheimer's disease; once more it is unclear how it increases the risk of Alzheimer's disease. Similarly, central cholinergic signalling is affected selectively and early in the Alzheimer's disease brain, again why cholinergic neurons show this sensitivity is still unclear. However, the three main known Alzheimer's disease risk factors, advancing age, female gender and APOE4, have been linked to a high apolipoprotein-E and accumulation of the acetylcholine degrading enzyme, butyrylcholinesterase in cerebrospinal fluids of patients. Furthermore, numerous reports indicate that amyloid-β interacts with butyrylcholinesterase and apolipoprotein-E. We have proposed that this interaction leads to formation of soluble ultrareactive acetylcholine-hydrolyzing complexes termed BAβACs, to adjust at demand both synaptic and extracellular acetylcholine signalling. This hypothesis predicted presence of acetylcholine-synthesizing enzyme, choline acetyltransferase in extracellular fluids to allow maintenance of equilibrium between breakdown and synthesis of acetylcholine through continuous in situ syntheses. A recent proof-of-concept study led to the discovery of this enzyme in the human extracellular fluids. We report here that apolipoprotein-E, in particular ε4 isoprotein acts as one of the strongest endogenous anti-amyloid-β fibrillization agents reported in the literature. At biological concentrations, apolipoprotein-E prevented amyloid-β fibrillization for at least 65 h. We show that amyloid-β interacts readily in an apolipoprotein-facilitated manner with butyrylcholinesterase, forming highly stable and soluble complexes, BAβACs, which can be separated in their native states by sucrose density gradient technique. Enzymological analyses further evinced that amyloid-β concentration dependently increased the acetylcholine-hydrolyzing capacity of cholinesterases. In silico biomolecular analysis further deciphered the allosteric amino acid fingerprint of the amyloid-β-cholinesterase molecular interaction in formation of BAβACs. In the case of butyrylcholinesterase, the results indicated that amyloid-β interacts with a putative activation site at the mouth of its catalytic tunnel, most likely leading to increased acetylcholine influx into the catalytic site, and thereby increasing the intrinsic catalytic rate of butyrylcholinesterase. In conclusion, at least one of the native physiological functions of amyloid-β is allosteric modulation of the intrinsic catalytic efficiency of cholinesterases, and thereby regulation of synaptic and extrasynaptic cholinergic signalling. High apolipoprotein-E may pathologically alter the biodynamics of this amyloid-β function.
منابع مشابه
Amyloid-b peptides act as allosteric modulator of cholinergic signalling through formation of soluble BAbACs
Amyloid-b peptides, through highly sophisticated enzymatic machinery, are universally produced and released in an action potential synchronized manner into the interstitial fluids in the brain. Yet no native functions are attributed to amyloid-b. The amyloid-b hypothesis ascribes just neurotoxicity properties through build-up of soluble homomeric amyloid-b oligomers or fibrillar deposits. Apoli...
متن کاملEffects of soluble β-amyloid on the release of neurotransmitters from rat brain synaptosomes
Contradictory results have been reported on the interaction of beta-amyloid (Aβ) with cholinergic receptors. The present paper investigates the modulatory effect of Aβ1-40 on the neurotransmitter release evoked by nicotinic (nAChRs) and muscarinic (mAChRs) receptors. Aβ1-40 inhibits both nicotinic and muscarinic-evoked [(3)H]DA overflow from rat nerve endings. Added to perfusion medium, Aβ1-40 ...
متن کاملPreparation and study of the inhibitory effect of nano-niosomes containing essential oil from artemisia absinthium on amyloid fibril formation
Objective(s): Artemisia absinthium is an aromatic, perennial small shrub that shows multiple medical benefits, including anticancerous, neuroprotective, antifungal, hepatoprotective, antidepressant and antioxidant properties. One of the effective approaches to treat Alzheimer’s disease is targeting amyloid aggregation by antiamyloid drugs. In the current research study, an excellent grouping of...
متن کاملSoluble Gamma-secretase Modulators Attenuate Alzheimer's β-amyloid Pathology and Induce Conformational Changes in Presenilin 1
A central pathogenic event of Alzheimer's disease (AD) is the accumulation of the Aβ42 peptide, which is generated from amyloid-β precursor protein (APP) via cleavages by β- and γ-secretase. We have developed a class of soluble 2-aminothiazole γ-secretase modulators (SGSMs) that preferentially decreases Aβ42 levels. However, the effects of SGSMs in AD animals and cells expressing familial AD mu...
متن کاملMonoamine oxidase inhibitors: promising therapeutic agents for Alzheimer's disease (Review).
Activated monoamine oxidase (MAO) has a critical role in the pathogenesis of Alzheimer's disease (AD), including the formation of amyloid plaques from amyloid β peptide (Aβ) production and accumulation, formation of neurofibrillary tangles, and cognitive impairment via the destruction of cholinergic neurons and disorder of the cholinergic system. Several studies have indicated that MAO inhibito...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 139 شماره
صفحات -
تاریخ انتشار 2016