Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods.
نویسندگان
چکیده
This work investigates the role of cytosolic Na+ exclusion in roots as a means of salinity tolerance in wheat, and offers in planta methods for the functional assessment of major transporters contributing to this trait. An electrophysiological protocol was developed to quantify the activity of plasma membrane Na+ efflux systems in roots, using the microelectrode ion flux estimation (MIFE) technique. We show that active efflux of Na+ from wheat root epidermal cells is mediated by a SOS1-like homolog, energized by the plasma membrane H+-ATPase. SOS1-like efflux activity was highest in Kharchia 65, a salt-tolerant bread wheat cultivar. Kharchia 65 also had an enhanced ability to sequester large quantities of Na+ into the vacuoles of root cells, as revealed by confocal microscopy using Sodium Green. These findings were consistent with the highest level of expression of both SOS1 and NHX1 transcripts in plant roots in this variety. In the sensitive wheat varieties, a greater proportion of Na+ was located in the root cell cytosol. Overall, our findings suggest a critical role of cytosolic Na+ exclusion for salinity tolerance in wheat and offer convenient protocols to quantify the contribution of the major transporters conferring this trait, to screen plants for salinity tolerance.
منابع مشابه
Assessment of the vacuolar Na+/H+ antiporter (NHX1) transcriptional changes in Leptochloa fusca L. in response to salt and cadmium stresses
Sodium/proton exchangers (NHX) are key players in plant responses to salinity and have a central role in establishing ion homeostasis. NHXs can be localized in tonoplast or plasma membranes, where they exchange sodium ions for protons, resulting in the removal of ions from the cytosol into vacuole or extracellular spaces. In the present study, the expression pattern of the gene encoding Na+/H+ ...
متن کاملAssessment of the vacuolar Na+/H+ antiporter (NHX1) transcriptional changes in Leptochloa fusca L. in response to salt and cadmium stresses
Sodium/proton exchangers (NHX) are key players in plant responses to salinity and have a central role in establishing ion homeostasis. NHXs can be localized in tonoplast or plasma membranes, where they exchange sodium ions for protons, resulting in the removal of ions from the cytosol into vacuole or extracellular spaces. In the present study, the expression pattern of the gene encoding Na+/H+ ...
متن کاملبررسی غلظت سدیم و نسبت پتاسیم به سدیم بهعنوان ملاک تحمل به شوری در گندم و جو
Most researches on wheat and barley breeding for salt tolerance have focused mainly on excluding Na+ from different tissues but the results of some experiments suggest that contribution of Na+ exclusion to salt tolerance is overshadowed by other physiological responses. Three bread wheat cultivars differing in salt tolerance (Arg, Tajan and Baharan) and one barley cultivar (Nik) were employed t...
متن کاملAssessment of Root Growth and Physiological Responses of Four Bread Wheat (Triticum aestivum L.) Cultivars to Salinity Stress
Enlarged root systems that extend into the salt affected soil improve water and nutrient capture by plants and can increase plant productivity. In order to examine root system characteristics of four bread wheat cultivars contrasting in salt tolerance (Arg, Ofoq, Tajan and Morvarid) a greenhouse experiment was conducted with applying two salinity levels (0 and 150 mM NaCl) on plants grown in PV...
متن کاملEvaluation of Biochemical Response and Defense Mechanism of Wheat Antioxidant Enzymes to Salinity Stress
Understanding the reaction form and biochemical response of wheat cultivars about the salinity stress can help to better understand the defense mechanisms and identify the indicators and biomarkers of tolerance screening for salinity stress in this strategic plant and other field crop. For this purpose, biochemical traits related to salinity tolerance of wheat cultivars were evaluated as a f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant, cell & environment
دوره 34 6 شماره
صفحات -
تاریخ انتشار 2011