Removing nonlinearity of a homodyne interferometer by adjusting the gains of its quadrature detector systems.
نویسندگان
چکیده
Most homodyne interferometers have a quadrature detector system that includes two polarizing beam splitters that cause nonlinearity of the order of a few nanometers by phase mixing. Detectors should have the same gains to reduce nonlinearity under the assumption that there is no loss in optical components. However, optical components exhibit some loss. We show that nonlinearity can be reduced to an order of 0.01 nm when the detector gains are adjusted by simulation to include the optical characteristics. The compensated nonlinearity is 18 times smaller than that when the four detector gains are set to be equal.
منابع مشابه
Quadrature phase-shift error analysis using a homodyne laser interferometer.
The influence of quadrature phase shift on the measured displacement error was experimentally investigated using a two-detector polarizing homodyne laser interferometer with a quadrature detection system. Common nonlinearities, including the phase-shift error, were determined and effectively corrected by a robust data-processing algorithm. The measured phase-shift error perfectly agrees with th...
متن کاملOptimization of displacement-measuring quadrature interferometers considering the real properties of optical components.
We present the influence of alignment and the real properties of optical components on the performance of a two-detector homodyne displacement-measuring quadrature laser interferometer. An experimental method, based on the optimization of visibility and sensitivity, was established and theoretically described to assess the performance and stability of the interferometer. We show that the optima...
متن کاملCompensation for the Variable Cyclic Error in Homodyne Laser Interferometers
This paper presents a real-time method to compensate for the variable cyclic error in a homodyne laser interferometer. The parameters describing the quadrature signals of the interferometer are estimated using simple peak value detectors. The cyclic error in the homodyne laser interferometer was then corrected through simple arithmetic calculations of the quadrature signals. A field programmabl...
متن کاملAnalysis of Frequency Leakage in Different Optical Paths of Nano-Metrology Systems Based on Frequency-Path Models
The drawing of frequency-path (F-P) models of optical beams is an approach for nonlinearity analysis in nano-metrology systems and sensors based on the laser interferometers. In this paper, the frequency-path models of four nano-metrology laser interferometry systems are designed, analyzed and simulated, including ...
متن کاملModeling of measurement error in refractive index determination of fuel cell using neural network and genetic algorithm
Abstract: In this paper, a method for determination of refractive index in membrane of fuel cell on basis of three-longitudinal-mode laser heterodyne interferometer is presented. The optical path difference between the target and reference paths is fixed and phase shift is then calculated in terms of refractive index shift. The measurement accuracy of this system is limited by nonlinearity erro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied optics
دوره 43 12 شماره
صفحات -
تاریخ انتشار 2004