Evaluation of composition and mineral structure of callus tissue in rat femoral fracture.
نویسندگان
چکیده
Callus formation is a critical step for successful fracture healing. Little is known about the molecular composition and mineral structure of the newly formed tissue in the callus. The aim was to evaluate the feasibility of small angle x-ray scattering (SAXS) to assess mineral structure of callus and cortical bone and if it could provide complementary information with the compositional analyses from Fourier transform infrared (FTIR) microspectroscopy. Femurs of 12 male Sprague-Dawley rats at 9 weeks of age were fractured and fixed with an intramedullary 1.1 mm K-wire. Fractures were treated with the combinations of bone morphogenetic protein-7 and/or zoledronate. Rats were sacrificed after 6 weeks and both femurs were prepared for FTIR and SAXS analysis. Significant differences were found in the molecular composition and mineral structure between the fracture callus, fracture cortex, and control cortex. The degree of mineralization, collagen maturity, and degree of orientation of the mineral plates were lower in the callus tissue than in the cortices. The results indicate the feasibility of SAXS in the investigation of mineral structure of bone fracture callus and provide complementary information with the composition analyzed with FTIR. Moreover, this study contributes to the limited FTIR and SAXS data in the field.
منابع مشابه
The rat model of femur fracture for bone and mineral research
OBJECTIVES One commonly used rat fracture model for bone and mineral research is a closed mid-shaft femur fracture as described by Bonnarens in 1984. Initially, this model was believed to create very reproducible fractures. However, there have been frequent reports of comminution and varying rates of complication. Given the importance of precise anticipation of those characteristics in laborato...
متن کاملFourier Transform Infrared Spectroscopic Imaging of Fracture Healing in the Normal Mouse
Fourier transform infrared spectroscopic imaging (FTIRI) was used to study bone healing with spatial analysis of various callus tissues in wild type mice. Femoral fractures were produced in 28 male C57BL mice by osteotomy. Animals were sacrificed at 1, 2, 4, and 8 weeks to obtain callus tissue at well-defined healing stages. Following microcomputerized tomography, bone samples were cut in conse...
متن کاملHigh Concentrations of Pamidronate in Bone Weaken the Mechanical Properties of Intact Femora in a Rat Model
PURPOSE Bisphosphonates have been used to treat osteoporosis for more than ten years. However, complications associated with long-term administration of bisphosphonates, such as nonunion after pelvic insufficiency fracture or osteonecrosis of the jaw, have been recently reported in the literature. We investigated the relationships among the mechanical properties of the intact rat femur as well ...
متن کاملBone morphogenetic protein-7 accelerates fracture healing in osteoporotic rats
BACKGROUND Osteoporosis is characterized by low bone mass, bone fragility and increased susceptibility to fracture. Fracture healing in osteoporosis is delayed and rates of implant failure are high with few biological treatment options available. This study aimed to determine whether a single dose of bone morphogenetic protein-7 (BMP-7) in a collagen/carboxy-methyl cellulose (CMC) composite enh...
متن کاملHealing the Bone
Healing of the bone is different with the other part of the body. Fracture healing is actually a bone regeneration with no scar tissues, where as in wound healing, injured tissue is replaced by connective tissue which became a scar, Traditionally fracture healing is divided in to 4 stages: 1) Stage of inflammation; 2) Stage of soft callus; 3) Stage of hard callus and 4) Stage of remodeling. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 19 2 شماره
صفحات -
تاریخ انتشار 2014