End-to-End Deep HDR Imaging with Large Foreground Motions

نویسندگان

  • Shangzhe Wu
  • Jiarui Xu
  • Yu-Wing Tai
  • Chi-Keung Tang
چکیده

This paper proposes the first end-to-end deep framework for high dynamic range (HDR) imaging of dynamic scenes with large-scale foreground motions. In state-of-the-art deep HDR imaging such as [13], the problem is formulated as an image composition problem, by first aligning input images using optical flows which are still error-prone due to occlusion and large motions. In our end-to-end approach, HDR imaging is formulated as an image translation problem and no optical flows are used. Moreover, our simple translation network can automatically hallucinate plausible HDR details in the presence of total occlusion, saturation and under-exposure, which are otherwise almost impossible to recover by conventional optimization approaches. We perform extensive qualitative and quantitative comparisons to show that our end-to-end HDR approach produces excellent results where color artifacts and geometry distortion are significantly reduced compared with existing state-ofthe-art methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ExpandNet

High dynamic range (HDR) imaging provides the capability of handling real world lighting as opposed to the traditional low dynamic range (LDR) which struggles to accurately represent images with higher dynamic range. However, most imaging content is still available only in LDR. This paper presents a method for generating HDR content from LDR content based on deep Convolutional Neural Networks (...

متن کامل

Learning a bidirectional mapping between human whole-body motion and natural language using deep recurrent neural networks

Linking human whole-body motion and natural language is of great interest for the generation of semantic representations of observed human behaviors as well as for the generation of robot behaviors based on natural language input. While there has been a large body of research in this area, most approaches that exist today require a symbolic representation of motions (e.g. in the form of motion ...

متن کامل

Pixel Objectness

We propose an end-to-end learning framework for foreground object segmentation. Given a single novel image, our approach produces a pixel-level mask for all “object-like” regions—even for object categories never seen during training. We formulate the task as a structured prediction problem of assigning a foreground/background label to each pixel, implemented using a deep fully convolutional net...

متن کامل

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

Object cosegmentation using deep Siamese network

Object cosegmentation addresses the problem of discovering similar objects from multiple images and segmenting them as foreground simultaneously. In this paper, we propose a novel end-to-end pipeline to segment the similar objects simultaneously from relevant set of images using supervised learning via deep-learning framework. We experiment with multiple set of object proposal generation techni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.08937  شماره 

صفحات  -

تاریخ انتشار 2017