Endogenous methylarginines regulate neuronal nitric-oxide synthase and prevent excitotoxic injury.

نویسندگان

  • Arturo J Cardounel
  • Jay L Zweier
چکیده

Nitric oxide (NO) has a critical role in neuronal function; however, high levels lead to cellular injury. While guanidino-methylated arginines (MA) including asymmetric dimethylarginine (ADMA) and N(G)-methyl-l-arginine (NMA) are potent competitive inhibitors of nitric oxide synthase (NOS) and are released upon protein degradation, it is unknown whether their intracellular concentrations are sufficient to critically regulate neuronal NO production and secondary cellular function or injury. Therefore, we determine the intrinsic neuronal MA concentrations and their effects on neuronal NOS function and excitotoxic injury. Kinetic studies demonstrated that the K(m) for l-arginine is 2.38 microm with a V(max) of 0.229 micromol mg(-1) min(-1), while K(i) values of 0.67 microm and 0.50 microm were determined for ADMA and NMA, respectively. Normal neuronal concentrations of all NOS-inhibiting MA were determined to be approximately 15 microm, while l-arginine concentration is approximately 90 microm. These MA levels result in >50% inhibition of NO generation from neuronal NOS. Down-modulation or up-modulation of these neuronal MA levels, respectively, dramatically enhanced or suppressed NO-mediated excitotoxic injury. Thus, neuronal MA profoundly modulate NOS function and suppress NO mediated injury. Pharmacological modulation of the levels of these intrinsic NOS inhibitors offers a novel approach to modulate neuronal function and injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tat-NR2B9c prevents excitotoxic neuronal superoxide production.

The Tat-NR2B9c peptide has shown clinical efficacy as a neuroprotective agent in acute stroke. Tat-NR2B9c is designed to prevent nitric oxide (NO) production by preventing postsynaptic density protein 95 (PSD-95) binding to N-methyl-D-aspartate (NMDA) receptors and neuronal nitric oxide synthase; however, PSD-95 is a scaffolding protein that also couples NMDA receptors to other downstream effec...

متن کامل

Nitric oxide synthase isoforms undertake unique roles during excitotoxicity.

BACKGROUND AND PURPOSE Excitotoxicity is a component of many neurodegenerative diseases. The signaling events that lead from excitotoxic injury to neuronal death remain incompletely defined. Pharmacological approaches have shown that nitric oxide production is critical for the progression of neurodegeneration after the initiation of excitotoxicity by the glutamate analog kainate. Although nitri...

متن کامل

Endogenous nitric oxide synthase inhibitors in the biology of disease: markers, mediators, and regulators?

The asymmetric methylarginines inhibit nitric oxide synthesis in vivo by competing with L-arginine at the active site of nitric oxide synthase. High circulating levels of asymmetric dimethylarginine predict adverse outcomes, specifically vascular events but there is now increasing experimental and epidemiological evidence that these molecules, and the enzymes that regulate this pathway, play a ...

متن کامل

Blockade of neuronal nitric oxide synthase protects against excitotoxicity in vivo.

Nitric oxide may be a key mediator of excitotoxic neuronal injury in the central nervous system. We examined the effects of the neuronal nitric oxide synthase inhibitor 7-nitroindazole (7-NI) on excitotoxic striatal lesions. 7-NI significantly attenuated lesions produced by intrastriatal injections of NMDA, but not kainic acid or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 7...

متن کامل

Asymmetric dimethylarginine (ADMA) as a target for pharmacotherapy.

Asymmetric dimethylarginine (ADMA) is synthesized during the methylation of protein arginine residues by protein arginine methyltransferases (PRMT) and is released during proteolysis. ADMA is a competitive inhibitor of nitric oxide synthase and may decrease NO availability. ADMA is eliminated by renal excretion or is metabolized by dimethylarginine dimethylaminohydrolase (DDAH) to citruline and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 37  شماره 

صفحات  -

تاریخ انتشار 2002