Compartment modeling of dynamic brain PET--the impact of scatter corrections on parameter errors.
نویسندگان
چکیده
PURPOSE The aim of this study was to investigate the effect of scatter and its correction on kinetic parameters in dynamic brain positron emission tomography (PET) tumor imaging. The 2-tissue compartment model was used, and two different reconstruction methods and two scatter correction (SC) schemes were investigated. METHODS The gate Monte Carlo (MC) software was used to perform 2 × 15 full PET scan simulations of a voxelized head phantom with inserted tumor regions. The two sets of kinetic parameters of all tissues were chosen to represent the 2-tissue compartment model for the tracer 3'-deoxy-3'-((18)F)fluorothymidine (FLT), and were denoted FLT1 and FLT2. PET data were reconstructed with both 3D filtered back-projection with reprojection (3DRP) and 3D ordered-subset expectation maximization (OSEM). Images including true coincidences with attenuation correction (AC) and true+scattered coincidences with AC and with and without one of two applied SC schemes were reconstructed. Kinetic parameters were estimated by weighted nonlinear least squares fitting of image derived time-activity curves. Calculated parameters were compared to the true input to the MC simulations. RESULTS The relative parameter biases for scatter-eliminated data were 15%, 16%, 4%, 30%, 9%, and 7% (FLT1) and 13%, 6%, 1%, 46%, 12%, and 8% (FLT2) for K1, k2, k3, k4, Va, and Ki, respectively. As expected, SC was essential for most parameters since omitting it increased biases by 10 percentage points on average. SC was not found necessary for the estimation of Ki and k3, however. There was no significant difference in parameter biases between the two investigated SC schemes or from parameter biases from scatter-eliminated PET data. Furthermore, neither 3DRP nor OSEM yielded the smallest parameter biases consistently although there was a slight favor for 3DRP which produced less biased k3 and Ki estimates while OSEM resulted in a less biased Va. The uncertainty in OSEM parameters was about 26% (FLT1) and 12% (FLT2) larger than for 3DRP although identical postfilters were applied. CONCLUSIONS SC was important for good parameter estimations. Both investigated SC schemes performed equally well on average and properly corrected for the scattered radiation, without introducing further bias. Furthermore, 3DRP was slightly favorable over OSEM in terms of kinetic parameter biases and SDs.
منابع مشابه
Quantitative Methods for Tumor Imaging with Dynamic PET
There is always a need and drive to improve modern cancer care. Dynamic positron emission tomography (PET) offers the advantage of in vivo functional imaging, combined with the ability to follow the physiological processes over time. In addition, by applying tracer kinetic modeling to the dynamic PET data, thus estimating pharmacokinetic parameters associated to e.g. glucose metabolism, cell pr...
متن کاملF-fluorothymidine kinetics of malignant brain tumors
Purpose F-labeled deoxy-fluorothymidine (FLT), a marker of cellular proliferation, has been used in PET tumor imaging. Here, the FLT kinetics of malignant brain tumors were investigated. Methods Seven patients with high-grade tumors and two patients with metastases had 12 studies. After 1.5 MBq/kg F-FLT had been administered intravenously, dynamic PET studies were acquired for 75 min. Images we...
متن کاملAnalytical propagation of errors in dynamic SPECT: estimators, degrading factors, bias and noise.
Dynamic SPECT is a relatively new technique that may potentially benefit many imaging applications. Though similar to dynamic PET, the accuracy and precision of dynamic SPECT parameter estimates are degraded by factors that differ from those encountered in PET. In this work we formulate a methodology for analytically studying the propagation of errors from dynamic projection data to kinetic par...
متن کاملEffect of scatter coincidences, partial volume, positron range and non-colinearity on the quantification of FDOPA Patlak analysis
Introduction: The key characteristics of positron emission tomography (PET) are its quantitative capability and its sensitivity, which allow the in vivo imaging of biochemical interactions with small amounts of tracer concentrations. Therefore, accurate quantification is important. However, it can be sensitive to several physical factors. The aim of this investigation is the assessment of the e...
متن کاملFDG kinetic modeling in small rodent brain PET: optimization of data acquisition and analysis
BACKGROUND Kinetic modeling of brain glucose metabolism in small rodents from positron emission tomography (PET) data using 2-deoxy-2-[(18) F]fluoro-d-glucose (FDG) has been highly inconsistent, due to different modeling parameter settings and underestimation of the impact of methodological flaws in experimentation. This article aims to contribute toward improved experimental standards. As solu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 41 11 شماره
صفحات -
تاریخ انتشار 2014