A sensitive assay for trypsin using poly(thymine)-templated copper nanoparticles as fluorescent probes.

نویسندگان

  • Li-Juan Ou
  • Xiao-Yan Li
  • Li-Juan Li
  • Hong-Wei Liu
  • Ai-Ming Sun
  • Kai-Jian Liu
چکیده

A new, simple and sensitive fluorescence strategy was developed for the trypsin assay based on copper nanoparticles (CuNPs) and its different fluorescence response toward trypsin-catalyzed hydrolysis of cytochrome c (Cyt c). Polythymine (poly T)-templated CuNPs served as effective fluorescent probes. Cyt c is well-known to act as a quencher. However, herein, a low concentration of Cyt c was designed specially to act as the substrate of trypsin to avoid the quenching effects by electron transfer from Cyt c to CuNPs. In the presence of trypsin, Cyt c hydrolyzes to small peptides, releasing free cysteine residues. Nonfluorescent coordination complexes were formed upon exposure to free cysteine residues by a metal-ligand bond between Cu atoms and sulfur atoms, leading to a decreased fluorescence response to CuNPs. This novel method for the quantitative determination of trypsin has a linear detection range from 0.25 μg mL(-1) to 1000 μg mL(-1) and a relatively low detection limit of 42 ng mL(-1). To the best of our knowledge, this is the first application of the trypsin-catalyzed hydrolysis reaction of Cyt c to produce quenching effect in bioanalysis, which provided a novel approach for the biochemical sensing strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A simple and sensitive sensor for rapid detection of sulfide anions using DNA-templated copper nanoparticles as fluorescent probes.

A simple and rapid method for the detection of S(2-) anions with high selectivity and sensitivity has been developed by using random double-strand DNA-templated formation of copper nanoparticles as novel fluorescence probes in aqueous solution.

متن کامل

A Novel Detection Method of Human Serum Albumin Based on the Poly(Thymine)-Templated Copper Nanoparticles

In this work, we developed a facile fluorescence method for quantitative detection of human serum albumin (HSA) based on the inhibition of poly(thymine) (poly T)-templated copper nanoparticles (CuNPs) in the presence of HSA. Under normal circumstances, poly T-templated CuNPs can display strong fluorescence with excitation/emission peaks at 340/610 nm. However, in the presence of HSA, it will ab...

متن کامل

Random dsDNA-templated formation of copper nanoparticles as novel fluorescence probes for label-free lead ions detection.

A simple label-free method for the detection of Pb(2+) ions with high selectivity and sensitivity has been developed by using random double-strand DNA-templated formation of copper nanoparticles as novel fluorescence probes in aqueous solution.

متن کامل

In vitro Labeling of Neural Stem Cells with Poly-L-Lysine Coated Super Paramagnetic Nanoparticles for Green Fluorescent Protein Transfection

Background: The magnetic nanoparticle-based transfection method is a relatively new technique for delivery of functional genes to target tissues. We aimed to evaluate the transfection efficiency of rat neural stem cell (NSC) using poly-L-lysine hydrobromide (PLL)-coated super paramagnetic iron oxide nanoparticles (SPION). Methods: The SPION was prepared and coated with PLL as transfection agent...

متن کامل

Inhibition of dsDNA-templated copper nanoparticles by pyrophosphate as a label-free fluorescent strategy for alkaline phosphatase assay.

On the basis of the inhibition of double strand DNA (dsDNA)-templated fluorescent copper nanoparticles (CuNPs) by pyrophosphate (PPi), a novel label-free turn-on fluorescent strategy to detect alkaline phosphatase (ALP) under physiological conditions has been developed. This method relies on the strong interaction between PPi and Cu(2+), which would hamper the effective formation of fluorescent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 140 6  شماره 

صفحات  -

تاریخ انتشار 2015