Pyruvate-fortified cardioplegia suppresses oxidative stress and enhances phosphorylation potential of arrested myocardium.
نویسندگان
چکیده
Cardioplegic arrest for bypass surgery imposes global ischemia on the myocardium, which generates oxyradicals and depletes myocardial high-energy phosphates. The glycolytic metabolite pyruvate, but not its reduced congener lactate, increases phosphorylation potential and detoxifies oxyradicals in ischemic and postischemic myocardium. This study tested the hypothesis that pyruvate mitigates oxidative stress and preserves the energy state in cardioplegically arrested myocardium. In situ swine hearts were arrested for 60 min with a 4:1 mixture of blood and crystalloid cardioplegia solution containing 188 mM glucose alone (control) or with additional 23.8 mM lactate or 23.8 mM pyruvate and then reperfused for 3 min with cardioplegia-free blood. Glutathione (GSH), glutathione disulfide (GSSG), and energy metabolites [phosphocreatine (PCr), creatine (Cr), P(i)] were measured in myocardium, which was snap frozen at 45 min arrest and 3 min reperfusion to determine antioxidant GSH redox state (GSH/GSSG) and PCr phosphorylation potential {[PCr]/([Cr][P(i)])}. Coronary sinus 8-isoprostane indexed oxidative stress. Pyruvate cardioplegia lowered 8-isoprostane release approximately 40% during arrest versus control and lactate cardioplegia. Lactate and pyruvate cardioplegia dampened (P < 0.05 vs. control) the surge of 8-isoprostane release following reperfusion. Pyruvate doubled GSH/GSSG versus lactate cardioplegia during arrest, but GSH/GSSG fell in all three groups after reperfusion. Myocardial [PCr]/([Cr][P(i)]) was maintained in all three groups during arrest. Pyruvate cardioplegia doubled [PCr]/([Cr][P(i)]) versus control and lactate cardioplegia after reperfusion. Pyruvate cardioplegia mitigates oxidative stress during cardioplegic arrest and enhances myocardial energy state on reperfusion.
منابع مشابه
Pyruvate-fortified cardioplegia evokes myocardial erythropoietin signaling in swine undergoing cardiopulmonary bypass.
Pyruvate-fortified cardioplegia protects myocardium and hastens postsurgical recovery of patients undergoing cardiopulmonary bypass (CPB). Pyruvate reportedly suppresses degradation of the alpha-subunit of hypoxia-inducible factor-1 (HIF-1), an activator of the gene encoding the cardioprotective cytokine erythropoietin (EPO). This study tested the hypothesis that pyruvate-enriched cardioplegia ...
متن کاملReperfusion strategy after regional ischaemia: simulation of emergency revascularization and effects of integrated cardioplegia on myocardial resuscitation.
We induced ischaemia in the left anterior descending artery of 16 dogs while the heart was beating, followed by cardiopulmonary bypass (CPB), aortic cross clamping and blood cardioplegia. Half of the dogs received integrated blood cardioplegia and sudden uncontrolled reperfusion (group A) while the others received the same cardioplegia followed by pressure-controlled tepid initial reperfusion (...
متن کاملOxidative phosphorylation in mitochondria isolated from chronically stressed dog hearts.
Oxidative and phosphorylative activities were measured polarographically in mitochondria isolated from the right and left ventricles of normal and chronically stressed dog hearts. Chronic myocardial stress was produced experimentally by surgical procedures (combined tricuspid insufficiency and pulmonary stenosis, pulmonary insufficiency, aortic stenosis, aortic insufficiency, Potts's anastomosi...
متن کاملContribution of impaired myocardial insulin signaling to mitochondrial dysfunction and oxidative stress in the heart.
BACKGROUND Diabetes-associated cardiac dysfunction is associated with mitochondrial dysfunction and oxidative stress, which may contribute to left ventricular dysfunction. The contribution of altered myocardial insulin action, independent of associated changes in systemic metabolism, is incompletely understood. The present study tested the hypothesis that perinatal loss of insulin signaling in ...
متن کاملOleanolic Acid Suppresses Aerobic Glycolysis in Cancer Cells by Switching Pyruvate Kinase Type M Isoforms
Warburg effect, one of the hallmarks for cancer cells, is characterized by metabolic switch from mitochondrial oxidative phosphorylation to aerobic glycolysis. In recent years, increased expression level of pyruvate kinase M2 (PKM2) has been found to be the culprit of enhanced aerobic glycolysis in cancer cells. However, there is no agent inhibiting aerobic glycolysis by targeting PKM2. In this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 289 3 شماره
صفحات -
تاریخ انتشار 2005