Meloxicam inhibits biofilm formation and enhances antimicrobial agents efficacy by Pseudomonas aeruginosa
نویسندگان
چکیده
Microbial biofilms are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Bacterial cells in biofilm are 10~1,000-fold more resistant to antimicrobials than the planktonic cells. Burgeoning antibiotic resistance in Pseudomonas aeruginosa biofilm has necessitated the development of antimicrobial agents. Here, we have investigated the antibiofilm effect of meloxicam against P. aeruginosaPAO1 and its potential mechanisms. Further, we have explored whether meloxicam could enhance the susceptibility of bacterial biofilms to treatment with conventional antimicrobials. Here, we found that meloxicam could significantly inhibit PAO1 biofilm formation in a dose-dependent manner at the concentration without influence on planktonic cell growth. Meloxicam could also significantly inhibit the motilities, production of extracellular matrix, and expression of quorum sensing-related genes and virulence factors of PAO1. Furthermore, synergistic interaction was observed when meloxicam combined with tetracycline, gentamicin, tobramycin, ciprofloxacin, ceftriaxone, ofloxacin, norfloxacin, ceftazidime, and DNase at subminimal inhibitory concentrations against PAO1 bioiflm. Collectively, our study lays the foundation for further investigation of repurposing meloxicam as a topical antibiofilm agent to treat P. aeruginosa biofilm-related infections.
منابع مشابه
The association of biofilm formation and sub-minimal inhibitory concentrations of antimicrobial agents
Introduction: Although bacteria producing biofilm are more resistance to antimicrobial agents, biofilm formation can stimulated by sub-minimal inhibitory concentrations (sub-MICs) of some antimicrobial agents. Therefore, we designed present study to investigate the in vitro efficacy of several antibiotics (including ceftazidime, piperacillin, ticarcillin, carbenicillin, aztreonam, merop...
متن کاملStudy of antimicrobial effects of several antibiotics and iron oxide nanoparticles on biofilm producing pseudomonas aeruginosa
Objective(s): Pseudomonas aeruginosa is a nosocomial pathogen resistant to most antimicrobial treatments. Furthermore, it persists in adverse environments thereby forming biofilms on various surfaces. Researchers have therefore focused on antibiofilm strategies using nanoparticles due to their unique physicochemical properties. Superparamagnetic iron oxide nanoparticles (SIONPs) have recently s...
متن کاملبیوفیلم پسودوموناس ایروژینوزا و روشهای پیشگیری و درمانهای تازه آن
Background and Objective: Microbial biofilms are responsible for 65% of human infections, and are resistance to antibiotics. Pseudomonas aeruginosa is one of the most important biofilm producing bacteria. This review tries to explain the last mechanisms of Pseudomonas aeruginosa biofilm formation, the reasons for its resistance to antimicrobial agents, as well as new preventive measures and a...
متن کاملTryptophan inhibits biofilm formation by Pseudomonas aeruginosa.
Biofilm formation by Pseudomonas aeruginosa has been implicated in the pathology of chronic wounds. Both the d and l isoforms of tryptophan inhibited P. aeruginosa biofilm formation on tissue culture plates, with an equimolar ratio of d and l isoforms producing the greatest inhibitory effect. Addition of d-/l-tryptophan to existing biofilms inhibited further biofilm growth and caused partial bi...
متن کاملCorelation between antibiotic resistans and biofilm formation power of Pseudomonas aeruginosa
P. aeruginosa has been mentioned as the major causative agents of nosocomial infections. Pseudomonas infections are often serious and show different resistance to treatment due to distribution of antimicrobial resistance. Meanwhile, some strains are also able to form biofilm during contamination, which help bacteria to be even more persisyant to yreatment. We examined the antibiotic resistance ...
متن کامل