Bimolecular porous supramolecular networks deposited from solution on layered materials: graphite, boron nitride and molybdenum disulphide.
نویسندگان
چکیده
A two-dimensional porous network formed from perylene tetracarboxylic diimide (PTCDI) and melamine may be deposited from solution on the surfaces of highly oriented pyrolytic graphite (HOPG), hexagonal boron nitride (hBN) and molybdenum disulphide (MoS2). Images acquired using high resolution atomic force microscopy (AFM) operating under ambient conditions have revealed that the network forms extended ordered monolayers (>1 μm(2)) on HOPG and hBN whereas on MoS2 much smaller islands are observed.
منابع مشابه
Room temperature rubbing for few-layer two-dimensional thin flakes directly on flexible polymer substrates
The functional layers of few-layer two-dimensional (2-D) thin flakes on flexible polymers for stretchable applications have attracted much interest. However, most fabrication methods are "indirect" processes that require transfer steps. Moreover, previously reported "transfer-free" methods are only suitable for graphene and not for other few-layer 2-D thin flakes. Here, a friction based room te...
متن کاملNanoprocessing of layered crystalline materials by atomic force microscopy
By taking advantage of the mechanical anisotropy of crystalline materials, processing at a single-layer level can be realized for layered crystalline materials with periodically weak bonds. Mica (muscovite), graphite, molybdenum disulfide (MoS2), and boron nitride have layered structures, and there is little interaction between the cleavage planes existing in the basal planes of these materials...
متن کاملControlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices.
Atomically thin two-dimensional materials have emerged as promising candidates for flexible and transparent electronic applications. Here we show non-volatile memory devices, based on field-effect transistors with large hysteresis, consisting entirely of stacked two-dimensional materials. Graphene and molybdenum disulphide were employed as both channel and charge-trapping layers, whereas hexago...
متن کاملAmphiphilic graphene oxide stabilisation of hexagonal BN and MoS2 sheets.
A simple and scalable method has been developed for directly forming water-dispersible van der Waals solids involving mixing aqueous solution of graphene oxide (GO) with hexagonal boron nitride (BN) or molybdenum disulphide (MoS2) in N-methylpyrrolidone. The GO acts as an amphiphile in stabilising the colloidal solutions of the heterolaminar material in water.
متن کاملVan der Waals density functional for layered structures.
To understand sparse systems, we must account for both strong local atom bonds and weak nonlocal van der Waals forces between atoms separated by empty space. A fully nonlocal functional form [Phys. Rev. B 62, 6997 (2000)]] of density-functional theory (DFT) is applied here to the layered systems graphite, boron nitride, and molybdenum sulfide to compute bond lengths, binding energies, and compr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 50 64 شماره
صفحات -
تاریخ انتشار 2014