Double-base asymmetric AdaBoost
نویسندگان
چکیده
Based on the use of different exponential bases to define class-dependent error bounds, a new and highly efficient asymmetric boosting scheme, coined as AdaBoostDB (Double-Base), is proposed. Supported by a fully theoretical derivation procedure, unlike most of the other approaches in the literature, our algorithm preserves all the formal guarantees and properties of original (cost-insensitive) AdaBoost, similarly to the state-of-the-art CostSensitive AdaBoost algorithm. However, the key advantage of AdaBoostDB is that our novel derivation scheme enables an extremely efficient conditional search procedure, dramatically improving and simplifying the training phase of the algorithm. Experiments, both over synthetic and real datasets, reveal that AdaBoostDB is able to save over 99% training time with regard to Cost-Sensitive AdaBoost, providing the same cost-sensitive results. This computational advantage of AdaBoostDB can make a difference in problems managing huge pools of weak classifiers in which boosting techniques are commonly used.
منابع مشابه
Calibrating AdaBoost for Asymmetric Learning
Asymmetric classification problems are characterized by class imbalance or unequal costs for different types of misclassifications. One of the main cited weaknesses of AdaBoost is its perceived inability to handle asymmetric problems. As a result, a multitude of asymmetric versions of AdaBoost have been proposed, mainly as heuristic modifications to the original algorithm. In this paper we chal...
متن کاملOn Asymmetric Classifier Training for Detector Cascades
This paper examines the Asymmetric AdaBoost algorithm introduced by Viola and Jones for cascaded face detection. The Viola and Jones face detector uses cascaded classifiers to successively filter, or reject, non-faces. In this approach most non-faces are easily rejected by the earlier classifiers in the cascade, thus reducing the overall number of computations. This requires earlier cascade cla...
متن کاملStreet Detection with Asymmetric Haar Features
We present a system for object detection applied to street detection in satellite images. Our system is based on asymmetric Haar features. Asymmetric Haar features provide a rich feature space, which allows to build classifiers that are accurate and much simpler than those obtained with other features. The extremely large parameter space of potential features is explored using a genetic algorit...
متن کاملShedding light on the asymmetric learning capability of AdaBoost
Article history: Received 15 September 2010 Available online 22 November 2011 Communicated by F. Roli
متن کاملExtending AdaBoost to Iteratively Vary Its Base Classifiers
This paper introduces AdaBoost Dynamic, an extension of AdaBoost.M1 algorithm by Freund and Shapire. In this extension we use different “weak” classifiers in subsequent iterations of the algorithm, instead of AdaBoost’s fixed base classifier. The algorithm is tested with various datasets from UCI database, and results show that the algorithm performs equally well as AdaBoost with the best possi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 118 شماره
صفحات -
تاریخ انتشار 2013