Dynamic adaptation of cardiac baroreflex sensitivity to prolonged exposure to microgravity: data from a 16-day spaceflight.

نویسندگان

  • M Di Rienzo
  • P Castiglioni
  • F Iellamo
  • M Volterrani
  • M Pagani
  • G Mancia
  • J M Karemaker
  • G Parati
چکیده

This study explored the process of arterial baroreflex adaptation to microgravity, starting from the first day of flight, during the 16-day STS-107 Columbia Space Shuttle mission. Continuous blood pressure (BP), ECG, and respiratory frequency were collected in four astronauts on ground (baseline) and during flight at days 0-1, 6-7, and 12-13, both at rest and during moderate exercise (75 W) on a cycle ergometer. Sensitivity of the baroreflex heart rate control (BRS) was assessed by sequence and spectral alpha methods. Baroreflex effectiveness index (BEI); low-frequency (LF) power and high-frequency (HF) power of systolic BP (SBP), diastolic BP (DBP), and R-R interval (RRI); the RRI LF/HF ratio; and the RRI root mean square of successive differences (RMSSD) index were also estimated. We found that, at rest, BRS increased in early flight phase, compared with baseline (means +/- SE: 18.3 +/- 3.4 vs. 10.4 +/- 1.2 ms/mmHg; P < 0.05), and it tended to return to baseline in subsequent days. During exercise, BRS was lower than at rest, without differences between preflight and in-flight values. At rest, in the early flight phase, RMSSD and RRI HF power increased (P < 0.05) compared with baseline, whereas LF powers of SBP and DBP decreased. No statistical difference was found in these parameters during exercise before vs. during flight. These findings demonstrate that heart rate baroreflex sensitivity and markers of cardiac vagal modulation are enhanced during early exposure to microgravity, likely because of the blood centralization, and return to baseline values in subsequent flight phases, possibly because of the fluid loss. No deconditioning seems to occur in the baroreflex control of the heart.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prolonged microgravity degenerates biomechanical properties of the murine caudal intervertebral discs

INTRODUCTION: Prolonged exposure to microgravity has adverse effects on the human intervertebral disc (IVD), causing low back pain during spaceflight and an increased incidence of post-spaceflight herniated nucleus pulposus (HNP). Cervical HNP incidence among an astronaut sample population was nearly 5-fold higher compared to a control population, while incidence of lumbar HNP was not signifcan...

متن کامل

The mouse as a model of cardiovascular adaptations to microgravity.

There are a multitude of physiological adaptations to microgravity, involving the cardiovascular, neuromuscular, and neuroendocrine systems. Some of these adaptations lead to cardiovascular deconditioning on return to normal gravity, posing a threat to human functional integrity after long-term spaceflight. Animal models of microgravity, e.g., tail suspension in rats, have yielded important inf...

متن کامل

Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning.

After an exposure to weightlessness, the central nervous system operates under new dynamic and sensory contexts. To find optimal solutions for rapid adaptation, cosmonauts have to decide whether parameters from the world or their body have changed and to estimate their properties. Here, we investigated sensorimotor adaptation after a spaceflight of 10 days. Five cosmonauts performed forward poi...

متن کامل

Operational point of neural cardiovascular regulation in humans up to 6 months in space.

Entering weightlessness affects central circulation in humans by enhancing venous return and cardiac output. We tested whether the operational point of neural cardiovascular regulation in space sets accordingly to adopt a level close to that found in the ground-based horizontal position. Heart rate (HR), finger blood and brachial blood pressure (BP), and respiratory frequency were collected in ...

متن کامل

Post-spaceflight orthostatic intolerance: possible relationship to microgravity-induced plasticity in the vestibular system.

Even after short spaceflights, most astronauts experience at least some postflight reduction of orthostatic tolerance; this problem is severe in some subjects. The mechanisms leading to postflight orthostatic intolerance are not well-established, but have traditionally been thought to include the following: changes in leg hemodynamics, alterations in baroreceptor reflex gain, decreases in exerc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 105 5  شماره 

صفحات  -

تاریخ انتشار 2008